| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 |
|
| mpteq12dv.2 |
|
| Ref | Expression |
|---|---|
| mpteq12dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 |
. 2
| |
| 2 | mpteq12dv.2 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | 1, 3 | mpteq12dva 4136 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-opab 4117 df-mpt 4118 |
| This theorem is referenced by: mpteq12i 4143 offval 6184 offval3 6237 ccatfvalfi 11081 swrdval 11134 odzval 12649 restval 13162 prdsex 13186 prdsval 13190 qusval 13240 grpinvfvalg 13459 grpinvpropdg 13492 opprnegg 13930 lspfval 14235 lsppropd 14279 sraval 14284 psrval 14513 ntrfval 14657 clsfval 14658 neifval 14697 cnpfval 14752 cnprcl2k 14763 reldvg 15236 dvfvalap 15238 eldvap 15239 |
| Copyright terms: Public domain | W3C validator |