| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 |
|
| mpteq12dv.2 |
|
| Ref | Expression |
|---|---|
| mpteq12dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 |
. 2
| |
| 2 | mpteq12dv.2 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | 1, 3 | mpteq12dva 4164 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: mpteq12i 4171 offval 6224 offval3 6277 ccatfvalfi 11122 swrdval 11175 odzval 12759 restval 13273 prdsex 13297 prdsval 13301 qusval 13351 grpinvfvalg 13570 grpinvpropdg 13603 opprnegg 14041 lspfval 14346 lsppropd 14390 sraval 14395 psrval 14624 ntrfval 14768 clsfval 14769 neifval 14808 cnpfval 14863 cnprcl2k 14874 reldvg 15347 dvfvalap 15349 eldvap 15350 |
| Copyright terms: Public domain | W3C validator |