| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 |
|
| mpteq12dv.2 |
|
| Ref | Expression |
|---|---|
| mpteq12dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 |
. 2
| |
| 2 | mpteq12dv.2 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | 1, 3 | mpteq12dva 4125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-opab 4106 df-mpt 4107 |
| This theorem is referenced by: mpteq12i 4132 offval 6166 offval3 6219 ccatfvalfi 11048 swrdval 11101 odzval 12564 restval 13077 prdsex 13101 prdsval 13105 qusval 13155 grpinvfvalg 13374 grpinvpropdg 13407 opprnegg 13845 lspfval 14150 lsppropd 14194 sraval 14199 psrval 14428 ntrfval 14572 clsfval 14573 neifval 14612 cnpfval 14667 cnprcl2k 14678 reldvg 15151 dvfvalap 15153 eldvap 15154 |
| Copyright terms: Public domain | W3C validator |