ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dv Unicode version

Theorem mpteq12dv 4112
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12dv.1  |-  ( ph  ->  A  =  C )
mpteq12dv.2  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
mpteq12dv  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem mpteq12dv
StepHypRef Expression
1 mpteq12dv.1 . 2  |-  ( ph  ->  A  =  C )
2 mpteq12dv.2 . . 3  |-  ( ph  ->  B  =  D )
32adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
41, 3mpteq12dva 4111 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    |-> cmpt 4091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-opab 4092  df-mpt 4093
This theorem is referenced by:  mpteq12i  4118  offval  6140  offval3  6188  odzval  12382  restval  12859  prdsex  12883  qusval  12909  grpinvfvalg  13117  grpinvpropdg  13150  opprnegg  13582  lspfval  13887  lsppropd  13931  sraval  13936  psrval  14163  ntrfval  14279  clsfval  14280  neifval  14319  cnpfval  14374  cnprcl2k  14385  reldvg  14858  dvfvalap  14860  eldvap  14861
  Copyright terms: Public domain W3C validator