| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 |
|
| mpteq12dv.2 |
|
| Ref | Expression |
|---|---|
| mpteq12dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 |
. 2
| |
| 2 | mpteq12dv.2 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | 1, 3 | mpteq12dva 4115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: mpteq12i 4122 offval 6147 offval3 6200 odzval 12435 restval 12947 prdsex 12971 prdsval 12975 qusval 13025 grpinvfvalg 13244 grpinvpropdg 13277 opprnegg 13715 lspfval 14020 lsppropd 14064 sraval 14069 psrval 14296 ntrfval 14420 clsfval 14421 neifval 14460 cnpfval 14515 cnprcl2k 14526 reldvg 14999 dvfvalap 15001 eldvap 15002 |
| Copyright terms: Public domain | W3C validator |