ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dv Unicode version

Theorem mpteq12dv 4137
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12dv.1  |-  ( ph  ->  A  =  C )
mpteq12dv.2  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
mpteq12dv  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem mpteq12dv
StepHypRef Expression
1 mpteq12dv.1 . 2  |-  ( ph  ->  A  =  C )
2 mpteq12dv.2 . . 3  |-  ( ph  ->  B  =  D )
32adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
41, 3mpteq12dva 4136 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177    |-> cmpt 4116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-opab 4117  df-mpt 4118
This theorem is referenced by:  mpteq12i  4143  offval  6184  offval3  6237  ccatfvalfi  11081  swrdval  11134  odzval  12649  restval  13162  prdsex  13186  prdsval  13190  qusval  13240  grpinvfvalg  13459  grpinvpropdg  13492  opprnegg  13930  lspfval  14235  lsppropd  14279  sraval  14284  psrval  14513  ntrfval  14657  clsfval  14658  neifval  14697  cnpfval  14752  cnprcl2k  14763  reldvg  15236  dvfvalap  15238  eldvap  15239
  Copyright terms: Public domain W3C validator