ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dv Unicode version

Theorem mpteq12dv 4116
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12dv.1  |-  ( ph  ->  A  =  C )
mpteq12dv.2  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
mpteq12dv  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem mpteq12dv
StepHypRef Expression
1 mpteq12dv.1 . 2  |-  ( ph  ->  A  =  C )
2 mpteq12dv.2 . . 3  |-  ( ph  ->  B  =  D )
32adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
41, 3mpteq12dva 4115 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    |-> cmpt 4095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4096  df-mpt 4097
This theorem is referenced by:  mpteq12i  4122  offval  6147  offval3  6200  odzval  12435  restval  12947  prdsex  12971  prdsval  12975  qusval  13025  grpinvfvalg  13244  grpinvpropdg  13277  opprnegg  13715  lspfval  14020  lsppropd  14064  sraval  14069  psrval  14296  ntrfval  14420  clsfval  14421  neifval  14460  cnpfval  14515  cnprcl2k  14526  reldvg  14999  dvfvalap  15001  eldvap  15002
  Copyright terms: Public domain W3C validator