| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 |
|
| mpteq12dv.2 |
|
| Ref | Expression |
|---|---|
| mpteq12dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 |
. 2
| |
| 2 | mpteq12dv.2 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | 1, 3 | mpteq12dva 4124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-opab 4105 df-mpt 4106 |
| This theorem is referenced by: mpteq12i 4131 offval 6165 offval3 6218 ccatfvalfi 11046 odzval 12535 restval 13048 prdsex 13072 prdsval 13076 qusval 13126 grpinvfvalg 13345 grpinvpropdg 13378 opprnegg 13816 lspfval 14121 lsppropd 14165 sraval 14170 psrval 14399 ntrfval 14543 clsfval 14544 neifval 14583 cnpfval 14638 cnprcl2k 14649 reldvg 15122 dvfvalap 15124 eldvap 15125 |
| Copyright terms: Public domain | W3C validator |