ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0r Unicode version

Theorem rabn0r 3473
Description: Nonempty restricted class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
rabn0r  |-  ( E. x  e.  A  ph  ->  { x  e.  A  |  ph }  =/=  (/) )

Proof of Theorem rabn0r
StepHypRef Expression
1 abn0r 3471 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  { x  |  ( x  e.  A  /\  ph ) }  =/=  (/) )
2 df-rex 2478 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
3 df-rab 2481 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43neeq1i 2379 . 2  |-  ( { x  e.  A  |  ph }  =/=  (/)  <->  { x  |  ( x  e.  A  /\  ph ) }  =/=  (/) )
51, 2, 43imtr4i 201 1  |-  ( E. x  e.  A  ph  ->  { x  e.  A  |  ph }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1503    e. wcel 2164   {cab 2179    =/= wne 2364   E.wrex 2473   {crab 2476   (/)c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-nul 3447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator