ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq1 Unicode version

Theorem neeq1 2389
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.)
Assertion
Ref Expression
neeq1  |-  ( A  =  B  ->  ( A  =/=  C  <->  B  =/=  C ) )

Proof of Theorem neeq1
StepHypRef Expression
1 eqeq1 2212 . . 3  |-  ( A  =  B  ->  ( A  =  C  <->  B  =  C ) )
21notbid 669 . 2  |-  ( A  =  B  ->  ( -.  A  =  C  <->  -.  B  =  C ) )
3 df-ne 2377 . 2  |-  ( A  =/=  C  <->  -.  A  =  C )
4 df-ne 2377 . 2  |-  ( B  =/=  C  <->  -.  B  =  C )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( A  =/=  C  <->  B  =/=  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1373    =/= wne 2376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-ne 2377
This theorem is referenced by:  neeq1i  2391  neeq1d  2394  nelrdva  2980  disji2  4037  0inp0  4210  frecabcl  6485  fiintim  7028  eldju2ndl  7174  updjudhf  7181  netap  7366  2oneel  7368  2omotaplemap  7369  2omotaplemst  7370  exmidapne  7372  xnn0nemnf  9369  uzn0  9664  xrnemnf  9899  xrnepnf  9900  ngtmnft  9939  xsubge0  10003  xposdif  10004  xleaddadd  10009  fztpval  10205  hashdmprop2dom  10989  fun2dmnop0  10992  pcpre1  12615  pcqmul  12626  pcqcl  12629  xpsfrnel  13176  isnzr2  13946  fiinopn  14476  neapmkv  16007  neap0mkv  16008  ltlenmkv  16009
  Copyright terms: Public domain W3C validator