Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeq1 | Unicode version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
neeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . 3 | |
2 | 1 | notbid 662 | . 2 |
3 | df-ne 2341 | . 2 | |
4 | df-ne 2341 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1348 wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-ne 2341 |
This theorem is referenced by: neeq1i 2355 neeq1d 2358 nelrdva 2937 disji2 3982 0inp0 4152 frecabcl 6378 fiintim 6906 eldju2ndl 7049 updjudhf 7056 xnn0nemnf 9209 uzn0 9502 xrnemnf 9734 xrnepnf 9735 ngtmnft 9774 xsubge0 9838 xposdif 9839 xleaddadd 9844 fztpval 10039 pcpre1 12246 pcqmul 12257 pcqcl 12260 fiinopn 12796 neapmkv 14099 |
Copyright terms: Public domain | W3C validator |