ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelsn Unicode version

Theorem nelsn 3618
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.)
Assertion
Ref Expression
nelsn  |-  ( A  =/=  B  ->  -.  A  e.  { B } )

Proof of Theorem nelsn
StepHypRef Expression
1 elsni 3601 . 2  |-  ( A  e.  { B }  ->  A  =  B )
21necon3ai 2389 1  |-  ( A  =/=  B  ->  -.  A  e.  { B } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2141    =/= wne 2340   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-sn 3589
This theorem is referenced by:  nnoddn2prmb  12216
  Copyright terms: Public domain W3C validator