| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | Unicode version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3648 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: elsn2g 3666 nelsn 3668 disjsn2 3696 sssnm 3795 disjxsn 4043 pwntru 4244 opth1 4281 elsuci 4451 ordtri2orexmid 4572 onsucsssucexmid 4576 sosng 4749 elrelimasn 5049 ressn 5224 funcnvsn 5320 funinsn 5324 funopdmsn 5766 fvconst 5774 fmptap 5776 fmptapd 5777 fvunsng 5780 mposnif 6041 1stconst 6309 2ndconst 6310 reldmtpos 6341 tpostpos 6352 1domsn 6916 ac6sfi 6997 onunsnss 7016 snon0 7039 snexxph 7054 elfi2 7076 supsnti 7109 djuf1olem 7157 eldju2ndl 7176 eldju2ndr 7177 difinfsnlem 7203 pw1on 7340 elreal2 7945 ax1rid 7992 ltxrlt 8140 un0addcl 9330 un0mulcl 9331 elfzonlteqm1 10341 xnn0nnen 10584 fxnn0nninf 10586 seqf1og 10668 1exp 10715 hashinfuni 10924 hashennnuni 10926 hashprg 10955 zfz1isolemiso 10986 fisumss 11736 sumsnf 11753 fsumsplitsn 11754 fsum2dlemstep 11778 fisumcom2 11782 fprodssdc 11934 fprodunsn 11948 fprod2dlemstep 11966 fprodcom2fi 11970 fprodsplitsn 11977 divalgmod 12271 phi1 12574 dfphi2 12575 nnnn0modprm0 12611 exmidunben 12830 gsumress 13260 0nsg 13583 gsumfzsnfd 13714 lsssn0 14165 lspsneq0 14221 txdis1cn 14783 plyaddlem1 15252 plymullem1 15253 plycoeid3 15262 plycj 15266 bj-nntrans 15924 bj-nnelirr 15926 pwtrufal 15971 sssneq 15976 exmidsbthrlem 15998 |
| Copyright terms: Public domain | W3C validator |