| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | Unicode version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3637 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 |
| This theorem is referenced by: elsn2g 3655 nelsn 3657 disjsn2 3685 sssnm 3784 disjxsn 4031 pwntru 4232 opth1 4269 elsuci 4438 ordtri2orexmid 4559 onsucsssucexmid 4563 sosng 4736 elrelimasn 5035 ressn 5210 funcnvsn 5303 funinsn 5307 fvconst 5750 fmptap 5752 fmptapd 5753 fvunsng 5756 mposnif 6016 1stconst 6279 2ndconst 6280 reldmtpos 6311 tpostpos 6322 1domsn 6878 ac6sfi 6959 onunsnss 6978 snon0 7001 snexxph 7016 elfi2 7038 supsnti 7071 djuf1olem 7119 eldju2ndl 7138 eldju2ndr 7139 difinfsnlem 7165 pw1on 7293 elreal2 7897 ax1rid 7944 ltxrlt 8092 un0addcl 9282 un0mulcl 9283 elfzonlteqm1 10286 xnn0nnen 10529 fxnn0nninf 10531 seqf1og 10613 1exp 10660 hashinfuni 10869 hashennnuni 10871 hashprg 10900 zfz1isolemiso 10931 fisumss 11557 sumsnf 11574 fsumsplitsn 11575 fsum2dlemstep 11599 fisumcom2 11603 fprodssdc 11755 fprodunsn 11769 fprod2dlemstep 11787 fprodcom2fi 11791 fprodsplitsn 11798 divalgmod 12092 phi1 12387 dfphi2 12388 nnnn0modprm0 12424 exmidunben 12643 gsumress 13038 0nsg 13344 gsumfzsnfd 13475 lsssn0 13926 lspsneq0 13982 txdis1cn 14514 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 plycj 14997 bj-nntrans 15597 bj-nnelirr 15599 pwtrufal 15642 sssneq 15646 exmidsbthrlem 15666 |
| Copyright terms: Public domain | W3C validator |