| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | Unicode version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3638 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: elsn2g 3656 nelsn 3658 disjsn2 3686 sssnm 3785 disjxsn 4032 pwntru 4233 opth1 4270 elsuci 4439 ordtri2orexmid 4560 onsucsssucexmid 4564 sosng 4737 elrelimasn 5036 ressn 5211 funcnvsn 5304 funinsn 5308 fvconst 5753 fmptap 5755 fmptapd 5756 fvunsng 5759 mposnif 6020 1stconst 6288 2ndconst 6289 reldmtpos 6320 tpostpos 6331 1domsn 6887 ac6sfi 6968 onunsnss 6987 snon0 7010 snexxph 7025 elfi2 7047 supsnti 7080 djuf1olem 7128 eldju2ndl 7147 eldju2ndr 7148 difinfsnlem 7174 pw1on 7309 elreal2 7914 ax1rid 7961 ltxrlt 8109 un0addcl 9299 un0mulcl 9300 elfzonlteqm1 10303 xnn0nnen 10546 fxnn0nninf 10548 seqf1og 10630 1exp 10677 hashinfuni 10886 hashennnuni 10888 hashprg 10917 zfz1isolemiso 10948 fisumss 11574 sumsnf 11591 fsumsplitsn 11592 fsum2dlemstep 11616 fisumcom2 11620 fprodssdc 11772 fprodunsn 11786 fprod2dlemstep 11804 fprodcom2fi 11808 fprodsplitsn 11815 divalgmod 12109 phi1 12412 dfphi2 12413 nnnn0modprm0 12449 exmidunben 12668 gsumress 13097 0nsg 13420 gsumfzsnfd 13551 lsssn0 14002 lspsneq0 14058 txdis1cn 14598 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 plycj 15081 bj-nntrans 15681 bj-nnelirr 15683 pwtrufal 15728 sssneq 15733 exmidsbthrlem 15753 |
| Copyright terms: Public domain | W3C validator |