| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | Unicode version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3681 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: elsn2g 3699 nelsn 3701 disjsn2 3729 sssnm 3832 disjxsn 4081 pwntru 4283 opth1 4322 elsuci 4494 ordtri2orexmid 4615 onsucsssucexmid 4619 sosng 4792 elrelimasn 5094 ressn 5269 funcnvsn 5366 funinsn 5370 funopdmsn 5819 fvconst 5827 fmptap 5829 fmptapd 5830 fvunsng 5833 mposnif 6098 1stconst 6367 2ndconst 6368 reldmtpos 6399 tpostpos 6410 1domsn 6976 ac6sfi 7060 onunsnss 7079 snon0 7102 snexxph 7117 elfi2 7139 supsnti 7172 djuf1olem 7220 eldju2ndl 7239 eldju2ndr 7240 difinfsnlem 7266 pw1m 7409 pw1on 7411 elreal2 8017 ax1rid 8064 ltxrlt 8212 un0addcl 9402 un0mulcl 9403 fzodisjsn 10380 elfzonlteqm1 10416 xnn0nnen 10659 fxnn0nninf 10661 seqf1og 10743 1exp 10790 hashinfuni 10999 hashennnuni 11001 hashprg 11030 zfz1isolemiso 11061 cats1un 11253 fisumss 11903 sumsnf 11920 fsumsplitsn 11921 fsum2dlemstep 11945 fisumcom2 11949 fprodssdc 12101 fprodunsn 12115 fprod2dlemstep 12133 fprodcom2fi 12137 fprodsplitsn 12144 divalgmod 12438 phi1 12741 dfphi2 12742 nnnn0modprm0 12778 exmidunben 12997 bassetsnn 13089 gsumress 13428 0nsg 13751 gsumfzsnfd 13882 lsssn0 14334 lspsneq0 14390 txdis1cn 14952 plyaddlem1 15421 plymullem1 15422 plycoeid3 15431 plycj 15435 pw0ss 15883 bj-nntrans 16314 bj-nnelirr 16316 pwtrufal 16363 sssneq 16368 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |