![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elsni | Unicode version |
Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elsni |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsng 3634 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ibi 176 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3625 |
This theorem is referenced by: elsn2g 3652 nelsn 3654 disjsn2 3682 sssnm 3781 disjxsn 4028 pwntru 4229 opth1 4266 elsuci 4435 ordtri2orexmid 4556 onsucsssucexmid 4560 sosng 4733 elrelimasn 5032 ressn 5207 funcnvsn 5300 funinsn 5304 fvconst 5747 fmptap 5749 fmptapd 5750 fvunsng 5753 mposnif 6013 1stconst 6276 2ndconst 6277 reldmtpos 6308 tpostpos 6319 1domsn 6875 ac6sfi 6956 onunsnss 6975 snon0 6996 snexxph 7011 elfi2 7033 supsnti 7066 djuf1olem 7114 eldju2ndl 7133 eldju2ndr 7134 difinfsnlem 7160 pw1on 7288 elreal2 7892 ax1rid 7939 ltxrlt 8087 un0addcl 9276 un0mulcl 9277 elfzonlteqm1 10280 xnn0nnen 10511 fxnn0nninf 10513 seqf1og 10595 1exp 10642 hashinfuni 10851 hashennnuni 10853 hashprg 10882 zfz1isolemiso 10913 fisumss 11538 sumsnf 11555 fsumsplitsn 11556 fsum2dlemstep 11580 fisumcom2 11584 fprodssdc 11736 fprodunsn 11750 fprod2dlemstep 11768 fprodcom2fi 11772 fprodsplitsn 11779 divalgmod 12071 phi1 12360 dfphi2 12361 nnnn0modprm0 12396 exmidunben 12586 gsumress 12981 0nsg 13287 gsumfzsnfd 13418 lsssn0 13869 lspsneq0 13925 txdis1cn 14457 plyaddlem1 14926 plymullem1 14927 plycj 14939 bj-nntrans 15513 bj-nnelirr 15515 pwtrufal 15558 sssneq 15562 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |