| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | Unicode version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3658 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sn 3649 |
| This theorem is referenced by: elsn2g 3676 nelsn 3678 disjsn2 3706 sssnm 3808 disjxsn 4057 pwntru 4259 opth1 4298 elsuci 4468 ordtri2orexmid 4589 onsucsssucexmid 4593 sosng 4766 elrelimasn 5067 ressn 5242 funcnvsn 5338 funinsn 5342 funopdmsn 5787 fvconst 5795 fmptap 5797 fmptapd 5798 fvunsng 5801 mposnif 6062 1stconst 6330 2ndconst 6331 reldmtpos 6362 tpostpos 6373 1domsn 6939 ac6sfi 7021 onunsnss 7040 snon0 7063 snexxph 7078 elfi2 7100 supsnti 7133 djuf1olem 7181 eldju2ndl 7200 eldju2ndr 7201 difinfsnlem 7227 pw1m 7370 pw1on 7372 elreal2 7978 ax1rid 8025 ltxrlt 8173 un0addcl 9363 un0mulcl 9364 fzodisjsn 10341 elfzonlteqm1 10376 xnn0nnen 10619 fxnn0nninf 10621 seqf1og 10703 1exp 10750 hashinfuni 10959 hashennnuni 10961 hashprg 10990 zfz1isolemiso 11021 cats1un 11212 fisumss 11818 sumsnf 11835 fsumsplitsn 11836 fsum2dlemstep 11860 fisumcom2 11864 fprodssdc 12016 fprodunsn 12030 fprod2dlemstep 12048 fprodcom2fi 12052 fprodsplitsn 12059 divalgmod 12353 phi1 12656 dfphi2 12657 nnnn0modprm0 12693 exmidunben 12912 gsumress 13342 0nsg 13665 gsumfzsnfd 13796 lsssn0 14247 lspsneq0 14303 txdis1cn 14865 plyaddlem1 15334 plymullem1 15335 plycoeid3 15344 plycj 15348 pw0ss 15794 bj-nntrans 16086 bj-nnelirr 16088 pwtrufal 16136 sssneq 16141 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |