Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsni | Unicode version |
Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elsni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsng 3590 | . 2 | |
2 | 1 | ibi 175 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 csn 3575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-sn 3581 |
This theorem is referenced by: elsn2g 3608 nelsn 3610 disjsn2 3638 sssnm 3733 disjxsn 3979 pwntru 4177 opth1 4213 elsuci 4380 ordtri2orexmid 4499 onsucsssucexmid 4503 sosng 4676 ressn 5143 funcnvsn 5232 funinsn 5236 fvconst 5672 fmptap 5674 fmptapd 5675 fvunsng 5678 mposnif 5932 1stconst 6185 2ndconst 6186 reldmtpos 6217 tpostpos 6228 1domsn 6781 ac6sfi 6860 onunsnss 6878 snon0 6897 snexxph 6911 elfi2 6933 supsnti 6966 djuf1olem 7014 eldju2ndl 7033 eldju2ndr 7034 difinfsnlem 7060 pw1on 7178 elreal2 7767 ax1rid 7814 ltxrlt 7960 un0addcl 9143 un0mulcl 9144 elfzonlteqm1 10141 fxnn0nninf 10369 1exp 10480 hashinfuni 10686 hashennnuni 10688 hashprg 10717 zfz1isolemiso 10748 fisumss 11329 sumsnf 11346 fsumsplitsn 11347 fsum2dlemstep 11371 fisumcom2 11375 fprodssdc 11527 fprodunsn 11541 fprod2dlemstep 11559 fprodcom2fi 11563 fprodsplitsn 11570 divalgmod 11860 phi1 12147 dfphi2 12148 nnnn0modprm0 12183 exmidunben 12355 txdis1cn 12878 bj-nntrans 13793 bj-nnelirr 13795 pwtrufal 13837 sssneq 13842 exmidsbthrlem 13861 |
Copyright terms: Public domain | W3C validator |