ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnoddn2prmb Unicode version

Theorem nnoddn2prmb 12153
Description: A number is a prime number not equal to  2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
nnoddn2prmb  |-  ( N  e.  ( Prime  \  {
2 } )  <->  ( N  e.  Prime  /\  -.  2  ||  N ) )

Proof of Theorem nnoddn2prmb
StepHypRef Expression
1 eldifi 3230 . . 3  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  e.  Prime )
2 oddn2prm 12152 . . 3  |-  ( N  e.  ( Prime  \  {
2 } )  ->  -.  2  ||  N )
31, 2jca 304 . 2  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( N  e.  Prime  /\ 
-.  2  ||  N
) )
4 simpl 108 . . 3  |-  ( ( N  e.  Prime  /\  -.  2  ||  N )  ->  N  e.  Prime )
5 z2even 11818 . . . . . . . 8  |-  2  ||  2
6 breq2 3971 . . . . . . . 8  |-  ( N  =  2  ->  (
2  ||  N  <->  2  ||  2 ) )
75, 6mpbiri 167 . . . . . . 7  |-  ( N  =  2  ->  2  ||  N )
87a1i 9 . . . . . 6  |-  ( N  e.  Prime  ->  ( N  =  2  ->  2  ||  N ) )
98con3dimp 625 . . . . 5  |-  ( ( N  e.  Prime  /\  -.  2  ||  N )  ->  -.  N  =  2
)
109neqned 2334 . . . 4  |-  ( ( N  e.  Prime  /\  -.  2  ||  N )  ->  N  =/=  2 )
11 nelsn 3596 . . . 4  |-  ( N  =/=  2  ->  -.  N  e.  { 2 } )
1210, 11syl 14 . . 3  |-  ( ( N  e.  Prime  /\  -.  2  ||  N )  ->  -.  N  e.  { 2 } )
134, 12eldifd 3112 . 2  |-  ( ( N  e.  Prime  /\  -.  2  ||  N )  ->  N  e.  ( Prime  \  { 2 } ) )
143, 13impbii 125 1  |-  ( N  e.  ( Prime  \  {
2 } )  <->  ( N  e.  Prime  /\  -.  2  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128    =/= wne 2327    \ cdif 3099   {csn 3561   class class class wbr 3967   2c2 8890    || cdvds 11695   Primecprime 12000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-xor 1358  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-prm 12001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator