Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mosn | Unicode version |
Description: A singleton has at most one element. This works whether is a proper class or not, and in that sense can be seen as encompassing both snmg 3691 and snprc 3638. (Contributed by Jim Kingdon, 30-Aug-2018.) |
Ref | Expression |
---|---|
mosn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 2899 | . 2 | |
2 | velsn 3590 | . . 3 | |
3 | 2 | mobii 2050 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1342 wmo 2014 wcel 2135 csn 3573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2726 df-sn 3579 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |