ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosn Unicode version

Theorem mosn 3669
Description: A singleton has at most one element. This works whether  A is a proper class or not, and in that sense can be seen as encompassing both snmg 3751 and snprc 3698. (Contributed by Jim Kingdon, 30-Aug-2018.)
Assertion
Ref Expression
mosn  |-  E* x  x  e.  { A }
Distinct variable group:    x, A

Proof of Theorem mosn
StepHypRef Expression
1 moeq 2948 . 2  |-  E* x  x  =  A
2 velsn 3650 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
32mobii 2091 . 2  |-  ( E* x  x  e.  { A }  <->  E* x  x  =  A )
41, 3mpbir 146 1  |-  E* x  x  e.  { A }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E*wmo 2055    e. wcel 2176   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sn 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator