ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosn Unicode version

Theorem mosn 3619
Description: A singleton has at most one element. This works whether  A is a proper class or not, and in that sense can be seen as encompassing both snmg 3701 and snprc 3648. (Contributed by Jim Kingdon, 30-Aug-2018.)
Assertion
Ref Expression
mosn  |-  E* x  x  e.  { A }
Distinct variable group:    x, A

Proof of Theorem mosn
StepHypRef Expression
1 moeq 2905 . 2  |-  E* x  x  =  A
2 velsn 3600 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
32mobii 2056 . 2  |-  ( E* x  x  e.  { A }  <->  E* x  x  =  A )
41, 3mpbir 145 1  |-  E* x  x  e.  { A }
Colors of variables: wff set class
Syntax hints:    = wceq 1348   E*wmo 2020    e. wcel 2141   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator