Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsn2 | Unicode version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that , rather than , be a set. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
elsn2.1 |
Ref | Expression |
---|---|
elsn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn2.1 | . 2 | |
2 | elsn2g 3609 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wcel 2136 cvv 2726 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: el1o 6405 elnn0 9116 elxnn0 9179 fisumss 11333 fprodssdc 11531 rest0 12819 |
Copyright terms: Public domain | W3C validator |