ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn2 Unicode version

Theorem elsn2 3652
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that  B, rather than  A, be a set. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
elsn2.1  |-  B  e. 
_V
Assertion
Ref Expression
elsn2  |-  ( A  e.  { B }  <->  A  =  B )

Proof of Theorem elsn2
StepHypRef Expression
1 elsn2.1 . 2  |-  B  e. 
_V
2 elsn2g 3651 . 2  |-  ( B  e.  _V  ->  ( A  e.  { B } 
<->  A  =  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  { B }  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by:  el1o  6490  elnn0  9242  elxnn0  9305  fisumss  11535  fprodssdc  11733  rest0  14347
  Copyright terms: Public domain W3C validator