ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn2 Unicode version

Theorem elsn2 3617
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that  B, rather than  A, be a set. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
elsn2.1  |-  B  e. 
_V
Assertion
Ref Expression
elsn2  |-  ( A  e.  { B }  <->  A  =  B )

Proof of Theorem elsn2
StepHypRef Expression
1 elsn2.1 . 2  |-  B  e. 
_V
2 elsn2g 3616 . 2  |-  ( B  e.  _V  ->  ( A  e.  { B } 
<->  A  =  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  { B }  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sn 3589
This theorem is referenced by:  el1o  6416  elnn0  9137  elxnn0  9200  fisumss  11355  fprodssdc  11553  rest0  12973
  Copyright terms: Public domain W3C validator