ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbii Unicode version

Theorem nfbii 1471
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
nfbii  |-  ( F/ x ph  <->  F/ x ps )

Proof of Theorem nfbii
StepHypRef Expression
1 nfbii.1 . . . 4  |-  ( ph  <->  ps )
21albii 1468 . . . 4  |-  ( A. x ph  <->  A. x ps )
31, 2imbi12i 239 . . 3  |-  ( (
ph  ->  A. x ph )  <->  ( ps  ->  A. x ps ) )
43albii 1468 . 2  |-  ( A. x ( ph  ->  A. x ph )  <->  A. x
( ps  ->  A. x ps ) )
5 df-nf 1459 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
6 df-nf 1459 . 2  |-  ( F/ x ps  <->  A. x
( ps  ->  A. x ps ) )
74, 5, 63bitr4i 212 1  |-  ( F/ x ph  <->  F/ x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351   F/wnf 1458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447
This theorem depends on definitions:  df-bi 117  df-nf 1459
This theorem is referenced by:  nfxfr  1472  nfxfrd  1473  nfsb  1944  nfsbt  1974  hbsbd  1980  sbal1yz  1999  dvelimALT  2008  dvelimfv  2009  dvelimor  2016  nfeudv  2039  nfeuv  2042  nfceqi  2313  nfreudxy  2648  dfnfc2  3823
  Copyright terms: Public domain W3C validator