ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbii Unicode version

Theorem nfbii 1466
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
nfbii  |-  ( F/ x ph  <->  F/ x ps )

Proof of Theorem nfbii
StepHypRef Expression
1 nfbii.1 . . . 4  |-  ( ph  <->  ps )
21albii 1463 . . . 4  |-  ( A. x ph  <->  A. x ps )
31, 2imbi12i 238 . . 3  |-  ( (
ph  ->  A. x ph )  <->  ( ps  ->  A. x ps ) )
43albii 1463 . 2  |-  ( A. x ( ph  ->  A. x ph )  <->  A. x
( ps  ->  A. x ps ) )
5 df-nf 1454 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
6 df-nf 1454 . 2  |-  ( F/ x ps  <->  A. x
( ps  ->  A. x ps ) )
74, 5, 63bitr4i 211 1  |-  ( F/ x ph  <->  F/ x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346   F/wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfxfr  1467  nfxfrd  1468  nfsb  1939  nfsbt  1969  hbsbd  1975  sbal1yz  1994  dvelimALT  2003  dvelimfv  2004  dvelimor  2011  nfeudv  2034  nfeuv  2037  nfceqi  2308  nfreudxy  2643  dfnfc2  3814
  Copyright terms: Public domain W3C validator