![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcxfr | Unicode version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 |
![]() ![]() ![]() ![]() |
nfcxfr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcxfr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfceqi.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | nfceqi 2332 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: nfrab1 2674 nfrabw 2675 nfdif 3280 nfun 3315 nfin 3365 nfpw 3614 nfpr 3668 nfsn 3678 nfop 3820 nfuni 3841 nfint 3880 nfiunxy 3938 nfiinxy 3939 nfiunya 3940 nfiinya 3941 nfiu1 3942 nfii1 3943 nfopab 4097 nfopab1 4098 nfopab2 4099 nfmpt 4121 nfmpt1 4122 repizf2 4191 nfsuc 4439 nfxp 4686 nfco 4827 nfcnv 4841 nfdm 4906 nfrn 4907 nfres 4944 nfima 5013 nfiota1 5217 nffv 5564 fvmptss2 5632 fvmptssdm 5642 fvmptf 5650 ralrnmpt 5700 rexrnmpt 5701 f1ompt 5709 f1mpt 5814 fliftfun 5839 nfriota1 5881 riotaprop 5897 nfoprab1 5967 nfoprab2 5968 nfoprab3 5969 nfoprab 5970 nfmpo1 5985 nfmpo2 5986 nfmpo 5987 ovmpos 6042 ov2gf 6043 ovi3 6055 nfof 6136 nfofr 6137 nftpos 6332 nfrecs 6360 nffrec 6449 nfixpxy 6771 nfixp1 6772 xpcomco 6880 nfsup 7051 nfinf 7076 nfdju 7101 caucvgprprlemaddq 7768 nfseq 10528 nfwrd 10942 nfsum1 11499 nfsum 11500 nfcprod1 11697 nfcprod 11698 lgseisenlem2 15187 |
Copyright terms: Public domain | W3C validator |