| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcxfr | Unicode version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 |
|
| nfcxfr.2 |
|
| Ref | Expression |
|---|---|
| nfcxfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfr.2 |
. 2
| |
| 2 | nfceqi.1 |
. . 3
| |
| 3 | 2 | nfceqi 2368 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: nfrab1 2711 nfrabw 2712 nfdif 3325 nfun 3360 nfin 3410 nfpw 3662 nfpr 3716 nfsn 3726 nfop 3873 nfuni 3894 nfint 3933 nfiunxy 3991 nfiinxy 3992 nfiunya 3993 nfiinya 3994 nfiu1 3995 nfii1 3996 nfopab 4152 nfopab1 4153 nfopab2 4154 nfmpt 4176 nfmpt1 4177 repizf2 4246 nfsuc 4499 nfxp 4746 nfco 4887 nfcnv 4901 nfdm 4968 nfrn 4969 nfres 5007 nfima 5076 nfiota1 5280 nffv 5639 fvmptss2 5711 fvmptssdm 5721 fvmptf 5729 ralrnmpt 5779 rexrnmpt 5780 f1ompt 5788 f1mpt 5901 fliftfun 5926 nfriota1 5968 riotaprop 5986 nfoprab1 6059 nfoprab2 6060 nfoprab3 6061 nfoprab 6062 nfmpo1 6077 nfmpo2 6078 nfmpo 6079 ovmpos 6134 ov2gf 6135 ovi3 6148 nfof 6230 nfofr 6231 nftpos 6431 nfrecs 6459 nffrec 6548 nfixpxy 6872 nfixp1 6873 xpcomco 6993 nfsup 7167 nfinf 7192 nfdju 7217 caucvgprprlemaddq 7903 nfseq 10687 nfwrd 11108 nfsum1 11875 nfsum 11876 nfcprod1 12073 nfcprod 12074 lgseisenlem2 15758 lfgrnloopen 15939 |
| Copyright terms: Public domain | W3C validator |