![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcxfr | Unicode version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 |
![]() ![]() ![]() ![]() |
nfcxfr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcxfr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfceqi.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | nfceqi 2315 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-cleq 2170 df-clel 2173 df-nfc 2308 |
This theorem is referenced by: nfrab1 2656 nfrabxy 2657 nfdif 3256 nfun 3291 nfin 3341 nfpw 3587 nfpr 3641 nfsn 3651 nfop 3792 nfuni 3813 nfint 3852 nfiunxy 3910 nfiinxy 3911 nfiunya 3912 nfiinya 3913 nfiu1 3914 nfii1 3915 nfopab 4068 nfopab1 4069 nfopab2 4070 nfmpt 4092 nfmpt1 4093 repizf2 4159 nfsuc 4405 nfxp 4650 nfco 4788 nfcnv 4802 nfdm 4867 nfrn 4868 nfres 4905 nfima 4974 nfiota1 5176 nffv 5521 fvmptss2 5587 fvmptssdm 5596 fvmptf 5604 ralrnmpt 5654 rexrnmpt 5655 f1ompt 5663 f1mpt 5766 fliftfun 5791 nfriota1 5832 riotaprop 5848 nfoprab1 5918 nfoprab2 5919 nfoprab3 5920 nfoprab 5921 nfmpo1 5936 nfmpo2 5937 nfmpo 5938 ovmpos 5992 ov2gf 5993 ovi3 6005 nfof 6082 nfofr 6083 nftpos 6274 nfrecs 6302 nffrec 6391 nfixpxy 6711 nfixp1 6712 xpcomco 6820 nfsup 6985 nfinf 7010 nfdju 7035 caucvgprprlemaddq 7698 nfseq 10441 nfsum1 11348 nfsum 11349 nfcprod1 11546 nfcprod 11547 |
Copyright terms: Public domain | W3C validator |