![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcxfr | Unicode version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 |
![]() ![]() ![]() ![]() |
nfcxfr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcxfr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfceqi.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | nfceqi 2332 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: nfrab1 2674 nfrabw 2675 nfdif 3281 nfun 3316 nfin 3366 nfpw 3615 nfpr 3669 nfsn 3679 nfop 3821 nfuni 3842 nfint 3881 nfiunxy 3939 nfiinxy 3940 nfiunya 3941 nfiinya 3942 nfiu1 3943 nfii1 3944 nfopab 4098 nfopab1 4099 nfopab2 4100 nfmpt 4122 nfmpt1 4123 repizf2 4192 nfsuc 4440 nfxp 4687 nfco 4828 nfcnv 4842 nfdm 4907 nfrn 4908 nfres 4945 nfima 5014 nfiota1 5218 nffv 5565 fvmptss2 5633 fvmptssdm 5643 fvmptf 5651 ralrnmpt 5701 rexrnmpt 5702 f1ompt 5710 f1mpt 5815 fliftfun 5840 nfriota1 5882 riotaprop 5898 nfoprab1 5968 nfoprab2 5969 nfoprab3 5970 nfoprab 5971 nfmpo1 5986 nfmpo2 5987 nfmpo 5988 ovmpos 6043 ov2gf 6044 ovi3 6057 nfof 6138 nfofr 6139 nftpos 6334 nfrecs 6362 nffrec 6451 nfixpxy 6773 nfixp1 6774 xpcomco 6882 nfsup 7053 nfinf 7078 nfdju 7103 caucvgprprlemaddq 7770 nfseq 10531 nfwrd 10945 nfsum1 11502 nfsum 11503 nfcprod1 11700 nfcprod 11701 lgseisenlem2 15228 |
Copyright terms: Public domain | W3C validator |