![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcxfr | Unicode version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 |
![]() ![]() ![]() ![]() |
nfcxfr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcxfr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfceqi.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | nfceqi 2315 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-cleq 2170 df-clel 2173 df-nfc 2308 |
This theorem is referenced by: nfrab1 2657 nfrabxy 2658 nfdif 3258 nfun 3293 nfin 3343 nfpw 3590 nfpr 3644 nfsn 3654 nfop 3796 nfuni 3817 nfint 3856 nfiunxy 3914 nfiinxy 3915 nfiunya 3916 nfiinya 3917 nfiu1 3918 nfii1 3919 nfopab 4073 nfopab1 4074 nfopab2 4075 nfmpt 4097 nfmpt1 4098 repizf2 4164 nfsuc 4410 nfxp 4655 nfco 4794 nfcnv 4808 nfdm 4873 nfrn 4874 nfres 4911 nfima 4980 nfiota1 5182 nffv 5527 fvmptss2 5594 fvmptssdm 5603 fvmptf 5611 ralrnmpt 5661 rexrnmpt 5662 f1ompt 5670 f1mpt 5775 fliftfun 5800 nfriota1 5841 riotaprop 5857 nfoprab1 5927 nfoprab2 5928 nfoprab3 5929 nfoprab 5930 nfmpo1 5945 nfmpo2 5946 nfmpo 5947 ovmpos 6001 ov2gf 6002 ovi3 6014 nfof 6091 nfofr 6092 nftpos 6283 nfrecs 6311 nffrec 6400 nfixpxy 6720 nfixp1 6721 xpcomco 6829 nfsup 6994 nfinf 7019 nfdju 7044 caucvgprprlemaddq 7710 nfseq 10458 nfsum1 11367 nfsum 11368 nfcprod1 11565 nfcprod 11566 lgseisenlem2 14639 |
Copyright terms: Public domain | W3C validator |