| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcxfr | Unicode version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 |
|
| nfcxfr.2 |
|
| Ref | Expression |
|---|---|
| nfcxfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfr.2 |
. 2
| |
| 2 | nfceqi.1 |
. . 3
| |
| 3 | 2 | nfceqi 2335 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: nfrab1 2677 nfrabw 2678 nfdif 3284 nfun 3319 nfin 3369 nfpw 3618 nfpr 3672 nfsn 3682 nfop 3824 nfuni 3845 nfint 3884 nfiunxy 3942 nfiinxy 3943 nfiunya 3944 nfiinya 3945 nfiu1 3946 nfii1 3947 nfopab 4101 nfopab1 4102 nfopab2 4103 nfmpt 4125 nfmpt1 4126 repizf2 4195 nfsuc 4443 nfxp 4690 nfco 4831 nfcnv 4845 nfdm 4910 nfrn 4911 nfres 4948 nfima 5017 nfiota1 5221 nffv 5568 fvmptss2 5636 fvmptssdm 5646 fvmptf 5654 ralrnmpt 5704 rexrnmpt 5705 f1ompt 5713 f1mpt 5818 fliftfun 5843 nfriota1 5885 riotaprop 5901 nfoprab1 5971 nfoprab2 5972 nfoprab3 5973 nfoprab 5974 nfmpo1 5989 nfmpo2 5990 nfmpo 5991 ovmpos 6046 ov2gf 6047 ovi3 6060 nfof 6141 nfofr 6142 nftpos 6337 nfrecs 6365 nffrec 6454 nfixpxy 6776 nfixp1 6777 xpcomco 6885 nfsup 7058 nfinf 7083 nfdju 7108 caucvgprprlemaddq 7775 nfseq 10549 nfwrd 10963 nfsum1 11521 nfsum 11522 nfcprod1 11719 nfcprod 11720 lgseisenlem2 15312 |
| Copyright terms: Public domain | W3C validator |