ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcxfrd Unicode version

Theorem nfcxfrd 2310
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfceqi.1  |-  A  =  B
nfcxfrd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfcxfrd  |-  ( ph  -> 
F/_ x A )

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2  |-  ( ph  -> 
F/_ x B )
2 nfceqi.1 . . 3  |-  A  =  B
32nfceqi 2308 . 2  |-  ( F/_ x A  <->  F/_ x B )
41, 3sylibr 133 1  |-  ( ph  -> 
F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166  df-nfc 2301
This theorem is referenced by:  nfcsb1d  3080  nfcsbd  3084  nfcsbw  3085  nfifd  3553  nfunid  3803  nfiotadw  5163  nfriotadxy  5817  nfovd  5882  nfnegd  8115
  Copyright terms: Public domain W3C validator