Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hblem Unicode version

Theorem hblem 2196
 Description: Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
hblem.1
Assertion
Ref Expression
hblem
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem hblem
StepHypRef Expression
1 hblem.1 . . 3
21hbsb 1872 . 2
3 clelsb3 2193 . 2
43albii 1405 . 2
52, 3, 43imtr3i 199 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1288   wcel 1439  wsb 1693 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085 This theorem is referenced by:  nfcrii  2222
 Copyright terms: Public domain W3C validator