ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hblem Unicode version

Theorem hblem 2196
Description: Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
hblem.1  |-  ( y  e.  A  ->  A. x  y  e.  A )
Assertion
Ref Expression
hblem  |-  ( z  e.  A  ->  A. x  z  e.  A )
Distinct variable groups:    y, A    x, z
Allowed substitution hints:    A( x, z)

Proof of Theorem hblem
StepHypRef Expression
1 hblem.1 . . 3  |-  ( y  e.  A  ->  A. x  y  e.  A )
21hbsb 1872 . 2  |-  ( [ z  /  y ] y  e.  A  ->  A. x [ z  / 
y ] y  e.  A )
3 clelsb3 2193 . 2  |-  ( [ z  /  y ] y  e.  A  <->  z  e.  A )
43albii 1405 . 2  |-  ( A. x [ z  /  y ] y  e.  A  <->  A. x  z  e.  A
)
52, 3, 43imtr3i 199 1  |-  ( z  e.  A  ->  A. x  z  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1288    e. wcel 1439   [wsb 1693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085
This theorem is referenced by:  nfcrii  2222
  Copyright terms: Public domain W3C validator