ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hblem Unicode version

Theorem hblem 2304
Description: Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
hblem.1  |-  ( y  e.  A  ->  A. x  y  e.  A )
Assertion
Ref Expression
hblem  |-  ( z  e.  A  ->  A. x  z  e.  A )
Distinct variable groups:    y, A    x, z
Allowed substitution hints:    A( x, z)

Proof of Theorem hblem
StepHypRef Expression
1 hblem.1 . . 3  |-  ( y  e.  A  ->  A. x  y  e.  A )
21hbsb 1968 . 2  |-  ( [ z  /  y ] y  e.  A  ->  A. x [ z  / 
y ] y  e.  A )
3 clelsb1 2301 . 2  |-  ( [ z  /  y ] y  e.  A  <->  z  e.  A )
43albii 1484 . 2  |-  ( A. x [ z  /  y ] y  e.  A  <->  A. x  z  e.  A
)
52, 3, 43imtr3i 200 1  |-  ( z  e.  A  ->  A. x  z  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   [wsb 1776    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192
This theorem is referenced by:  nfcrii  2332
  Copyright terms: Public domain W3C validator