Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcvf | GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 ⊢ Ⅎ𝑥𝑧 | |
2 | nfcv 2312 | . 2 ⊢ Ⅎ𝑧𝑦 | |
3 | id 19 | . 2 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
4 | 1, 2, 3 | dvelimc 2334 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1346 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 |
This theorem is referenced by: nfcvf2 2336 |
Copyright terms: Public domain | W3C validator |