![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcvf | GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2332 | . 2 ⊢ Ⅎ𝑥𝑧 | |
2 | nfcv 2332 | . 2 ⊢ Ⅎ𝑧𝑦 | |
3 | id 19 | . 2 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
4 | 1, 2, 3 | dvelimc 2354 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 Ⅎwnfc 2319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-cleq 2182 df-clel 2185 df-nfc 2321 |
This theorem is referenced by: nfcvf2 2356 |
Copyright terms: Public domain | W3C validator |