Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeudv | Unicode version |
Description: Deduction version of nfeu 2038. Similar to nfeud 2035 but has the additional constraint that and must be distinct. (Contributed by Jim Kingdon, 25-May-2018.) |
Ref | Expression |
---|---|
nfeudv.1 | |
nfeudv.2 |
Ref | Expression |
---|---|
nfeudv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . 3 | |
2 | nfeudv.1 | . . . 4 | |
3 | nfeudv.2 | . . . . 5 | |
4 | nfv 1521 | . . . . . 6 | |
5 | 4 | a1i 9 | . . . . 5 |
6 | 3, 5 | nfbid 1581 | . . . 4 |
7 | 2, 6 | nfald 1753 | . . 3 |
8 | 1, 7 | nfexd 1754 | . 2 |
9 | df-eu 2022 | . . 3 | |
10 | 9 | nfbii 1466 | . 2 |
11 | 8, 10 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wnf 1453 wex 1485 weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-eu 2022 |
This theorem is referenced by: nfeud 2035 |
Copyright terms: Public domain | W3C validator |