ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeudv Unicode version

Theorem nfeudv 2029
Description: Deduction version of nfeu 2033. Similar to nfeud 2030 but has the additional constraint that  x and  y must be distinct. (Contributed by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeudv.1  |-  F/ y
ph
nfeudv.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfeudv  |-  ( ph  ->  F/ x E! y ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem nfeudv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . 3  |-  F/ z
ph
2 nfeudv.1 . . . 4  |-  F/ y
ph
3 nfeudv.2 . . . . 5  |-  ( ph  ->  F/ x ps )
4 nfv 1516 . . . . . 6  |-  F/ x  y  =  z
54a1i 9 . . . . 5  |-  ( ph  ->  F/ x  y  =  z )
63, 5nfbid 1576 . . . 4  |-  ( ph  ->  F/ x ( ps  <->  y  =  z ) )
72, 6nfald 1748 . . 3  |-  ( ph  ->  F/ x A. y
( ps  <->  y  =  z ) )
81, 7nfexd 1749 . 2  |-  ( ph  ->  F/ x E. z A. y ( ps  <->  y  =  z ) )
9 df-eu 2017 . . 3  |-  ( E! y ps  <->  E. z A. y ( ps  <->  y  =  z ) )
109nfbii 1461 . 2  |-  ( F/ x E! y ps  <->  F/ x E. z A. y ( ps  <->  y  =  z ) )
118, 10sylibr 133 1  |-  ( ph  ->  F/ x E! y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   F/wnf 1448   E.wex 1480   E!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-eu 2017
This theorem is referenced by:  nfeud  2030
  Copyright terms: Public domain W3C validator