ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeud Unicode version

Theorem nfeud 2070
Description: Deduction version of nfeu 2073. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfeud  |-  ( ph  ->  F/ x E! y ps )

Proof of Theorem nfeud
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1551 . . 3  |-  F/ z ps
21sb8eu 2067 . 2  |-  ( E! y ps  <->  E! z [ z  /  y ] ps )
3 nfv 1551 . . 3  |-  F/ z
ph
4 nfeud.1 . . . 4  |-  F/ y
ph
5 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
64, 5nfsbd 2005 . . 3  |-  ( ph  ->  F/ x [ z  /  y ] ps )
73, 6nfeudv 2069 . 2  |-  ( ph  ->  F/ x E! z [ z  /  y ] ps )
82, 7nfxfrd 1498 1  |-  ( ph  ->  F/ x E! y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1483   [wsb 1785   E!weu 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057
This theorem is referenced by:  nfmod  2071  hbeud  2076  nfreudxy  2680
  Copyright terms: Public domain W3C validator