ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeud Unicode version

Theorem nfeud 2040
Description: Deduction version of nfeu 2043. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfeud  |-  ( ph  ->  F/ x E! y ps )

Proof of Theorem nfeud
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1526 . . 3  |-  F/ z ps
21sb8eu 2037 . 2  |-  ( E! y ps  <->  E! z [ z  /  y ] ps )
3 nfv 1526 . . 3  |-  F/ z
ph
4 nfeud.1 . . . 4  |-  F/ y
ph
5 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
64, 5nfsbd 1975 . . 3  |-  ( ph  ->  F/ x [ z  /  y ] ps )
73, 6nfeudv 2039 . 2  |-  ( ph  ->  F/ x E! z [ z  /  y ] ps )
82, 7nfxfrd 1473 1  |-  ( ph  ->  F/ x E! y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1458   [wsb 1760   E!weu 2024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027
This theorem is referenced by:  nfmod  2041  hbeud  2046  nfreudxy  2648
  Copyright terms: Public domain W3C validator