ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeud Unicode version

Theorem nfeud 2035
Description: Deduction version of nfeu 2038. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfeud  |-  ( ph  ->  F/ x E! y ps )

Proof of Theorem nfeud
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . 3  |-  F/ z ps
21sb8eu 2032 . 2  |-  ( E! y ps  <->  E! z [ z  /  y ] ps )
3 nfv 1521 . . 3  |-  F/ z
ph
4 nfeud.1 . . . 4  |-  F/ y
ph
5 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
64, 5nfsbd 1970 . . 3  |-  ( ph  ->  F/ x [ z  /  y ] ps )
73, 6nfeudv 2034 . 2  |-  ( ph  ->  F/ x E! z [ z  /  y ] ps )
82, 7nfxfrd 1468 1  |-  ( ph  ->  F/ x E! y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1453   [wsb 1755   E!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022
This theorem is referenced by:  nfmod  2036  hbeud  2041  nfreudxy  2643
  Copyright terms: Public domain W3C validator