ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeud Unicode version

Theorem nfeud 1964
Description: Deduction version of nfeu 1967. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfeud  |-  ( ph  ->  F/ x E! y ps )

Proof of Theorem nfeud
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1466 . . 3  |-  F/ z ps
21sb8eu 1961 . 2  |-  ( E! y ps  <->  E! z [ z  /  y ] ps )
3 nfv 1466 . . 3  |-  F/ z
ph
4 nfeud.1 . . . 4  |-  F/ y
ph
5 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
64, 5nfsbd 1899 . . 3  |-  ( ph  ->  F/ x [ z  /  y ] ps )
73, 6nfeudv 1963 . 2  |-  ( ph  ->  F/ x E! z [ z  /  y ] ps )
82, 7nfxfrd 1409 1  |-  ( ph  ->  F/ x E! y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1394   [wsb 1692   E!weu 1948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951
This theorem is referenced by:  nfmod  1965  hbeud  1970  nfreudxy  2540
  Copyright terms: Public domain W3C validator