| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeudv | GIF version | ||
| Description: Deduction version of nfeu 2074. Similar to nfeud 2071 but has the additional constraint that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 25-May-2018.) |
| Ref | Expression |
|---|---|
| nfeudv.1 | ⊢ Ⅎ𝑦𝜑 |
| nfeudv.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfeudv | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfeudv.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfeudv.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | nfv 1552 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | |
| 5 | 4 | a1i 9 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) |
| 6 | 3, 5 | nfbid 1612 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
| 7 | 2, 6 | nfald 1784 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
| 8 | 1, 7 | nfexd 1785 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑧∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
| 9 | df-eu 2058 | . . 3 ⊢ (∃!𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) | |
| 10 | 9 | nfbii 1497 | . 2 ⊢ (Ⅎ𝑥∃!𝑦𝜓 ↔ Ⅎ𝑥∃𝑧∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
| 11 | 8, 10 | sylibr 134 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-eu 2058 |
| This theorem is referenced by: nfeud 2071 |
| Copyright terms: Public domain | W3C validator |