ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu Unicode version

Theorem nfeu 2073
Description: Bound-variable hypothesis builder for existential uniqueness. Note that  x and  y needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.)
Hypothesis
Ref Expression
nfeu.1  |-  F/ x ph
Assertion
Ref Expression
nfeu  |-  F/ x E! y ph

Proof of Theorem nfeu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1551 . . 3  |-  F/ z
ph
21sb8eu 2067 . 2  |-  ( E! y ph  <->  E! z [ z  /  y ] ph )
3 nfeu.1 . . . 4  |-  F/ x ph
43nfsb 1974 . . 3  |-  F/ x [ z  /  y ] ph
54nfeuv 2072 . 2  |-  F/ x E! z [ z  / 
y ] ph
62, 5nfxfr 1497 1  |-  F/ x E! y ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1483   [wsb 1785   E!weu 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057
This theorem is referenced by:  hbeu  2075  eusv2nf  4503
  Copyright terms: Public domain W3C validator