Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeuv | Unicode version |
Description: Bound-variable hypothesis builder for existential uniqueness. This is similar to nfeu 2025 but has the additional condition that and must be distinct. (Contributed by Jim Kingdon, 23-May-2018.) |
Ref | Expression |
---|---|
nfeuv.1 |
Ref | Expression |
---|---|
nfeuv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeuv.1 | . . . . 5 | |
2 | nfv 1508 | . . . . 5 | |
3 | 1, 2 | nfbi 1569 | . . . 4 |
4 | 3 | nfal 1556 | . . 3 |
5 | 4 | nfex 1617 | . 2 |
6 | df-eu 2009 | . . 3 | |
7 | 6 | nfbii 1453 | . 2 |
8 | 5, 7 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1333 wnf 1440 wex 1472 weu 2006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-eu 2009 |
This theorem is referenced by: nfeu 2025 |
Copyright terms: Public domain | W3C validator |