ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeuv Unicode version

Theorem nfeuv 2073
Description: Bound-variable hypothesis builder for existential uniqueness. This is similar to nfeu 2074 but has the additional condition that  x and  y must be distinct. (Contributed by Jim Kingdon, 23-May-2018.)
Hypothesis
Ref Expression
nfeuv.1  |-  F/ x ph
Assertion
Ref Expression
nfeuv  |-  F/ x E! y ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem nfeuv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfeuv.1 . . . . 5  |-  F/ x ph
2 nfv 1552 . . . . 5  |-  F/ x  y  =  z
31, 2nfbi 1613 . . . 4  |-  F/ x
( ph  <->  y  =  z )
43nfal 1600 . . 3  |-  F/ x A. y ( ph  <->  y  =  z )
54nfex 1661 . 2  |-  F/ x E. z A. y (
ph 
<->  y  =  z )
6 df-eu 2058 . . 3  |-  ( E! y ph  <->  E. z A. y ( ph  <->  y  =  z ) )
76nfbii 1497 . 2  |-  ( F/ x E! y ph  <->  F/ x E. z A. y ( ph  <->  y  =  z ) )
85, 7mpbir 146 1  |-  F/ x E! y ph
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371   F/wnf 1484   E.wex 1516   E!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-eu 2058
This theorem is referenced by:  nfeu  2074
  Copyright terms: Public domain W3C validator