| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeuv | GIF version | ||
| Description: Bound-variable hypothesis builder for existential uniqueness. This is similar to nfeu 2074 but has the additional condition that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 23-May-2018.) |
| Ref | Expression |
|---|---|
| nfeuv.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfeuv | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeuv.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | |
| 3 | 1, 2 | nfbi 1613 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ↔ 𝑦 = 𝑧) |
| 4 | 3 | nfal 1600 | . . 3 ⊢ Ⅎ𝑥∀𝑦(𝜑 ↔ 𝑦 = 𝑧) |
| 5 | 4 | nfex 1661 | . 2 ⊢ Ⅎ𝑥∃𝑧∀𝑦(𝜑 ↔ 𝑦 = 𝑧) |
| 6 | df-eu 2058 | . . 3 ⊢ (∃!𝑦𝜑 ↔ ∃𝑧∀𝑦(𝜑 ↔ 𝑦 = 𝑧)) | |
| 7 | 6 | nfbii 1497 | . 2 ⊢ (Ⅎ𝑥∃!𝑦𝜑 ↔ Ⅎ𝑥∃𝑧∀𝑦(𝜑 ↔ 𝑦 = 𝑧)) |
| 8 | 5, 7 | mpbir 146 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 Ⅎwnf 1484 ∃wex 1516 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-eu 2058 |
| This theorem is referenced by: nfeu 2074 |
| Copyright terms: Public domain | W3C validator |