| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeuv | GIF version | ||
| Description: Bound-variable hypothesis builder for existential uniqueness. This is similar to nfeu 2064 but has the additional condition that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 23-May-2018.) |
| Ref | Expression |
|---|---|
| nfeuv.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfeuv | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeuv.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | |
| 3 | 1, 2 | nfbi 1603 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ↔ 𝑦 = 𝑧) |
| 4 | 3 | nfal 1590 | . . 3 ⊢ Ⅎ𝑥∀𝑦(𝜑 ↔ 𝑦 = 𝑧) |
| 5 | 4 | nfex 1651 | . 2 ⊢ Ⅎ𝑥∃𝑧∀𝑦(𝜑 ↔ 𝑦 = 𝑧) |
| 6 | df-eu 2048 | . . 3 ⊢ (∃!𝑦𝜑 ↔ ∃𝑧∀𝑦(𝜑 ↔ 𝑦 = 𝑧)) | |
| 7 | 6 | nfbii 1487 | . 2 ⊢ (Ⅎ𝑥∃!𝑦𝜑 ↔ Ⅎ𝑥∃𝑧∀𝑦(𝜑 ↔ 𝑦 = 𝑧)) |
| 8 | 5, 7 | mpbir 146 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 ∃!weu 2045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-eu 2048 |
| This theorem is referenced by: nfeu 2064 |
| Copyright terms: Public domain | W3C validator |