ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbi Unicode version

Theorem nfbi 1603
Description: If  x is not free in  ph and  ps, then it is not free in  ( ph  <->  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Hypotheses
Ref Expression
nfbi.1  |-  F/ x ph
nfbi.2  |-  F/ x ps
Assertion
Ref Expression
nfbi  |-  F/ x
( ph  <->  ps )

Proof of Theorem nfbi
StepHypRef Expression
1 nfbi.1 . . . 4  |-  F/ x ph
21a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
3 nfbi.2 . . . 4  |-  F/ x ps
43a1i 9 . . 3  |-  ( T. 
->  F/ x ps )
52, 4nfbid 1602 . 2  |-  ( T. 
->  F/ x ( ph  <->  ps ) )
65mptru 1373 1  |-  F/ x
( ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1365   F/wnf 1474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475
This theorem is referenced by:  sb8eu  2058  nfeuv  2063  bm1.1  2181  abbi  2310  nfeq  2347  cleqf  2364  sbhypf  2813  ceqsexg  2892  elabgt  2905  elabgf  2906  copsex2t  4278  copsex2g  4279  opelopabsb  4294  opeliunxp2  4806  ralxpf  4812  rexxpf  4813  cbviota  5224  sb8iota  5226  fmptco  5728  nfiso  5853  uchoice  6195  dfoprab4f  6251  opeliunxp2f  6296  xpf1o  6905  bdsepnfALT  15535
  Copyright terms: Public domain W3C validator