Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfbi | Unicode version |
Description: If is not free in and , then it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfbi.1 | |
nfbi.2 |
Ref | Expression |
---|---|
nfbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbi.1 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | nfbi.2 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | 2, 4 | nfbid 1586 | . 2 |
6 | 5 | mptru 1362 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wtru 1354 wnf 1458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 |
This theorem is referenced by: sb8eu 2037 nfeuv 2042 bm1.1 2160 abbi 2289 nfeq 2325 cleqf 2342 sbhypf 2784 ceqsexg 2863 elabgt 2876 elabgf 2877 copsex2t 4239 copsex2g 4240 opelopabsb 4254 opeliunxp2 4760 ralxpf 4766 rexxpf 4767 cbviota 5175 sb8iota 5177 fmptco 5674 nfiso 5797 dfoprab4f 6184 opeliunxp2f 6229 xpf1o 6834 bdsepnfALT 14181 |
Copyright terms: Public domain | W3C validator |