| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfbi | Unicode version | ||
| Description: If  | 
| Ref | Expression | 
|---|---|
| nfbi.1 | 
 | 
| nfbi.2 | 
 | 
| Ref | Expression | 
|---|---|
| nfbi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfbi.1 | 
. . . 4
 | |
| 2 | 1 | a1i 9 | 
. . 3
 | 
| 3 | nfbi.2 | 
. . . 4
 | |
| 4 | 3 | a1i 9 | 
. . 3
 | 
| 5 | 2, 4 | nfbid 1602 | 
. 2
 | 
| 6 | 5 | mptru 1373 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 | 
| This theorem is referenced by: sb8eu 2058 nfeuv 2063 bm1.1 2181 abbi 2310 nfeq 2347 cleqf 2364 sbhypf 2813 ceqsexg 2892 elabgt 2905 elabgf 2906 copsex2t 4278 copsex2g 4279 opelopabsb 4294 opeliunxp2 4806 ralxpf 4812 rexxpf 4813 cbviota 5224 sb8iota 5226 fmptco 5728 nfiso 5853 uchoice 6195 dfoprab4f 6251 opeliunxp2f 6296 xpf1o 6905 bdsepnfALT 15535 | 
| Copyright terms: Public domain | W3C validator |