ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmod Unicode version

Theorem nfmod 2037
Description: Bound-variable hypothesis builder for "at most one". (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfmod  |-  ( ph  ->  F/ x E* y ps )

Proof of Theorem nfmod
StepHypRef Expression
1 df-mo 2024 . 2  |-  ( E* y ps  <->  ( E. y ps  ->  E! y ps ) )
2 nfeud.1 . . . 4  |-  F/ y
ph
3 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
42, 3nfexd 1755 . . 3  |-  ( ph  ->  F/ x E. y ps )
52, 3nfeud 2036 . . 3  |-  ( ph  ->  F/ x E! y ps )
64, 5nfimd 1579 . 2  |-  ( ph  ->  F/ x ( E. y ps  ->  E! y ps ) )
71, 6nfxfrd 1469 1  |-  ( ph  ->  F/ x E* y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1454   E.wex 1486   E!weu 2020   E*wmo 2021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529
This theorem depends on definitions:  df-bi 116  df-tru 1352  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024
This theorem is referenced by:  nfmo  2040
  Copyright terms: Public domain W3C validator