ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmod Unicode version

Theorem nfmod 2020
Description: Bound-variable hypothesis builder for "at most one." (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfmod  |-  ( ph  ->  F/ x E* y ps )

Proof of Theorem nfmod
StepHypRef Expression
1 df-mo 2007 . 2  |-  ( E* y ps  <->  ( E. y ps  ->  E! y ps ) )
2 nfeud.1 . . . 4  |-  F/ y
ph
3 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
42, 3nfexd 1738 . . 3  |-  ( ph  ->  F/ x E. y ps )
52, 3nfeud 2019 . . 3  |-  ( ph  ->  F/ x E! y ps )
64, 5nfimd 1562 . 2  |-  ( ph  ->  F/ x ( E. y ps  ->  E! y ps ) )
71, 6nfxfrd 1452 1  |-  ( ph  ->  F/ x E* y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1437   E.wex 1469   E!weu 2003   E*wmo 2004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007
This theorem is referenced by:  nfmo  2023
  Copyright terms: Public domain W3C validator