ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmod Unicode version

Theorem nfmod 2062
Description: Bound-variable hypothesis builder for "at most one". (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfmod  |-  ( ph  ->  F/ x E* y ps )

Proof of Theorem nfmod
StepHypRef Expression
1 df-mo 2049 . 2  |-  ( E* y ps  <->  ( E. y ps  ->  E! y ps ) )
2 nfeud.1 . . . 4  |-  F/ y
ph
3 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
42, 3nfexd 1775 . . 3  |-  ( ph  ->  F/ x E. y ps )
52, 3nfeud 2061 . . 3  |-  ( ph  ->  F/ x E! y ps )
64, 5nfimd 1599 . 2  |-  ( ph  ->  F/ x ( E. y ps  ->  E! y ps ) )
71, 6nfxfrd 1489 1  |-  ( ph  ->  F/ x E* y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1474   E.wex 1506   E!weu 2045   E*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by:  nfmo  2065
  Copyright terms: Public domain W3C validator