ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfifd Unicode version

Theorem nfifd 3598
Description: Deduction version of nfif 3599. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfifd.2  |-  ( ph  ->  F/ x ps )
nfifd.3  |-  ( ph  -> 
F/_ x A )
nfifd.4  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfifd  |-  ( ph  -> 
F/_ x if ( ps ,  A ,  B ) )

Proof of Theorem nfifd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-if 3572 . 2  |-  if ( ps ,  A ,  B )  =  {
y  |  ( ( y  e.  A  /\  ps )  \/  (
y  e.  B  /\  -.  ps ) ) }
2 nfv 1551 . . 3  |-  F/ y
ph
3 nfifd.3 . . . . . 6  |-  ( ph  -> 
F/_ x A )
43nfcrd 2362 . . . . 5  |-  ( ph  ->  F/ x  y  e.  A )
5 nfifd.2 . . . . 5  |-  ( ph  ->  F/ x ps )
64, 5nfand 1591 . . . 4  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
7 nfifd.4 . . . . . 6  |-  ( ph  -> 
F/_ x B )
87nfcrd 2362 . . . . 5  |-  ( ph  ->  F/ x  y  e.  B )
95nfnd 1680 . . . . 5  |-  ( ph  ->  F/ x  -.  ps )
108, 9nfand 1591 . . . 4  |-  ( ph  ->  F/ x ( y  e.  B  /\  -.  ps ) )
116, 10nford 1590 . . 3  |-  ( ph  ->  F/ x ( ( y  e.  A  /\  ps )  \/  (
y  e.  B  /\  -.  ps ) ) )
122, 11nfabd 2368 . 2  |-  ( ph  -> 
F/_ x { y  |  ( ( y  e.  A  /\  ps )  \/  ( y  e.  B  /\  -.  ps ) ) } )
131, 12nfcxfrd 2346 1  |-  ( ph  -> 
F/_ x if ( ps ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710   F/wnf 1483    e. wcel 2176   {cab 2191   F/_wnfc 2335   ifcif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-if 3572
This theorem is referenced by:  nfif  3599
  Copyright terms: Public domain W3C validator