ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfifd Unicode version

Theorem nfifd 3607
Description: Deduction version of nfif 3608. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfifd.2  |-  ( ph  ->  F/ x ps )
nfifd.3  |-  ( ph  -> 
F/_ x A )
nfifd.4  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfifd  |-  ( ph  -> 
F/_ x if ( ps ,  A ,  B ) )

Proof of Theorem nfifd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-if 3580 . 2  |-  if ( ps ,  A ,  B )  =  {
y  |  ( ( y  e.  A  /\  ps )  \/  (
y  e.  B  /\  -.  ps ) ) }
2 nfv 1552 . . 3  |-  F/ y
ph
3 nfifd.3 . . . . . 6  |-  ( ph  -> 
F/_ x A )
43nfcrd 2364 . . . . 5  |-  ( ph  ->  F/ x  y  e.  A )
5 nfifd.2 . . . . 5  |-  ( ph  ->  F/ x ps )
64, 5nfand 1592 . . . 4  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
7 nfifd.4 . . . . . 6  |-  ( ph  -> 
F/_ x B )
87nfcrd 2364 . . . . 5  |-  ( ph  ->  F/ x  y  e.  B )
95nfnd 1681 . . . . 5  |-  ( ph  ->  F/ x  -.  ps )
108, 9nfand 1592 . . . 4  |-  ( ph  ->  F/ x ( y  e.  B  /\  -.  ps ) )
116, 10nford 1591 . . 3  |-  ( ph  ->  F/ x ( ( y  e.  A  /\  ps )  \/  (
y  e.  B  /\  -.  ps ) ) )
122, 11nfabd 2370 . 2  |-  ( ph  -> 
F/_ x { y  |  ( ( y  e.  A  /\  ps )  \/  ( y  e.  B  /\  -.  ps ) ) } )
131, 12nfcxfrd 2348 1  |-  ( ph  -> 
F/_ x if ( ps ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710   F/wnf 1484    e. wcel 2178   {cab 2193   F/_wnfc 2337   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-if 3580
This theorem is referenced by:  nfif  3608
  Copyright terms: Public domain W3C validator