ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf3an Unicode version

Theorem nf3an 1566
Description: If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  /\  ps  /\  ch ). (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfan.1  |-  F/ x ph
nfan.2  |-  F/ x ps
nfan.3  |-  F/ x ch
Assertion
Ref Expression
nf3an  |-  F/ x
( ph  /\  ps  /\  ch )

Proof of Theorem nf3an
StepHypRef Expression
1 df-3an 980 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
2 nfan.1 . . . 4  |-  F/ x ph
3 nfan.2 . . . 4  |-  F/ x ps
42, 3nfan 1565 . . 3  |-  F/ x
( ph  /\  ps )
5 nfan.3 . . 3  |-  F/ x ch
64, 5nfan 1565 . 2  |-  F/ x
( ( ph  /\  ps )  /\  ch )
71, 6nfxfr 1474 1  |-  F/ x
( ph  /\  ps  /\  ch )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 978   F/wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461
This theorem is referenced by:  vtocl3gaf  2807  mob  2920  nfop  3795  mkvprop  7156  seq3f1olemstep  10501  seq3f1olemp  10502  nfsum1  11364  nfsum  11365  dfgrp3mlem  12968
  Copyright terms: Public domain W3C validator