ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf3an Unicode version

Theorem nf3an 1577
Description: If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  /\  ps  /\  ch ). (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfan.1  |-  F/ x ph
nfan.2  |-  F/ x ps
nfan.3  |-  F/ x ch
Assertion
Ref Expression
nf3an  |-  F/ x
( ph  /\  ps  /\  ch )

Proof of Theorem nf3an
StepHypRef Expression
1 df-3an 982 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
2 nfan.1 . . . 4  |-  F/ x ph
3 nfan.2 . . . 4  |-  F/ x ps
42, 3nfan 1576 . . 3  |-  F/ x
( ph  /\  ps )
5 nfan.3 . . 3  |-  F/ x ch
64, 5nfan 1576 . 2  |-  F/ x
( ( ph  /\  ps )  /\  ch )
71, 6nfxfr 1485 1  |-  F/ x
( ph  /\  ps  /\  ch )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 980   F/wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1472
This theorem is referenced by:  vtocl3gaf  2821  mob  2934  nfop  3809  mkvprop  7186  seq3f1olemstep  10532  seq3f1olemp  10533  nfsum1  11396  nfsum  11397  dfgrp3mlem  13042
  Copyright terms: Public domain W3C validator