| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nf3an | Unicode version | ||
| Description: If  | 
| Ref | Expression | 
|---|---|
| nfan.1 | 
 | 
| nfan.2 | 
 | 
| nfan.3 | 
 | 
| Ref | Expression | 
|---|---|
| nf3an | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3an 982 | 
. 2
 | |
| 2 | nfan.1 | 
. . . 4
 | |
| 3 | nfan.2 | 
. . . 4
 | |
| 4 | 2, 3 | nfan 1579 | 
. . 3
 | 
| 5 | nfan.3 | 
. . 3
 | |
| 6 | 4, 5 | nfan 1579 | 
. 2
 | 
| 7 | 1, 6 | nfxfr 1488 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 | 
| This theorem is referenced by: vtocl3gaf 2833 mob 2946 nfop 3824 mkvprop 7224 seq3f1olemstep 10606 seq3f1olemp 10607 nfsum1 11521 nfsum 11522 dfgrp3mlem 13230 | 
| Copyright terms: Public domain | W3C validator |