Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nf3an | Unicode version |
Description: If is not free in , , and , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfan.1 | |
nfan.2 | |
nfan.3 |
Ref | Expression |
---|---|
nf3an |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . 2 | |
2 | nfan.1 | . . . 4 | |
3 | nfan.2 | . . . 4 | |
4 | 2, 3 | nfan 1558 | . . 3 |
5 | nfan.3 | . . 3 | |
6 | 4, 5 | nfan 1558 | . 2 |
7 | 1, 6 | nfxfr 1467 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 w3a 973 wnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 |
This theorem is referenced by: vtocl3gaf 2799 mob 2912 nfop 3781 mkvprop 7134 seq3f1olemstep 10457 seq3f1olemp 10458 nfsum1 11319 nfsum 11320 |
Copyright terms: Public domain | W3C validator |