ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab Unicode version

Theorem nfsab 2157
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfsab.1  |-  F/ x ph
Assertion
Ref Expression
nfsab  |-  F/ x  z  e.  { y  |  ph }
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem nfsab
StepHypRef Expression
1 nfsab.1 . . . 4  |-  F/ x ph
21nfri 1507 . . 3  |-  ( ph  ->  A. x ph )
32hbab 2156 . 2  |-  ( z  e.  { y  | 
ph }  ->  A. x  z  e.  { y  |  ph } )
43nfi 1450 1  |-  F/ x  z  e.  { y  |  ph }
Colors of variables: wff set class
Syntax hints:   F/wnf 1448    e. wcel 2136   {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152
This theorem is referenced by:  nfab  2313  peano2  4572
  Copyright terms: Public domain W3C validator