ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab Unicode version

Theorem nfsab 2188
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfsab.1  |-  F/ x ph
Assertion
Ref Expression
nfsab  |-  F/ x  z  e.  { y  |  ph }
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem nfsab
StepHypRef Expression
1 nfsab.1 . . . 4  |-  F/ x ph
21nfri 1533 . . 3  |-  ( ph  ->  A. x ph )
32hbab 2187 . 2  |-  ( z  e.  { y  | 
ph }  ->  A. x  z  e.  { y  |  ph } )
43nfi 1476 1  |-  F/ x  z  e.  { y  |  ph }
Colors of variables: wff set class
Syntax hints:   F/wnf 1474    e. wcel 2167   {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183
This theorem is referenced by:  nfab  2344  peano2  4631  lss1d  13939
  Copyright terms: Public domain W3C validator