| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsab | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfsab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfsab | ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1545 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbab 2200 | . 2 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
| 4 | 3 | nfi 1488 | 1 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1486 ∈ wcel 2180 {cab 2195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 |
| This theorem is referenced by: nfab 2357 peano2 4664 lss1d 14312 |
| Copyright terms: Public domain | W3C validator |