ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab GIF version

Theorem nfsab 2185
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfsab.1 𝑥𝜑
Assertion
Ref Expression
nfsab 𝑥 𝑧 ∈ {𝑦𝜑}
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsab
StepHypRef Expression
1 nfsab.1 . . . 4 𝑥𝜑
21nfri 1530 . . 3 (𝜑 → ∀𝑥𝜑)
32hbab 2184 . 2 (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
43nfi 1473 1 𝑥 𝑧 ∈ {𝑦𝜑}
Colors of variables: wff set class
Syntax hints:  wnf 1471  wcel 2164  {cab 2179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180
This theorem is referenced by:  nfab  2341  peano2  4627  lss1d  13879
  Copyright terms: Public domain W3C validator