ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb4or Unicode version

Theorem nfsb4or 2040
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.)
Hypothesis
Ref Expression
nfsb4or.1  |-  F/ z
ph
Assertion
Ref Expression
nfsb4or  |-  ( A. z  z  =  y  \/  F/ z [ y  /  x ] ph )

Proof of Theorem nfsb4or
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfsb4or.1 . . 3  |-  F/ z
ph
21nfsb 1965 . 2  |-  F/ z [ w  /  x ] ph
3 sbequ 1854 . 2  |-  ( w  =  y  ->  ( [ w  /  x ] ph  <->  [ y  /  x ] ph ) )
42, 3dvelimor 2037 1  |-  ( A. z  z  =  y  \/  F/ z [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    \/ wo 709   A.wal 1362   F/wnf 1474   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator