ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb4or Unicode version

Theorem nfsb4or 1948
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.)
Hypothesis
Ref Expression
nfsb4or.1  |-  F/ z
ph
Assertion
Ref Expression
nfsb4or  |-  ( A. z  z  =  y  \/  F/ z [ y  /  x ] ph )

Proof of Theorem nfsb4or
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfsb4or.1 . . 3  |-  F/ z
ph
21nfsb 1871 . 2  |-  F/ z [ w  /  x ] ph
3 sbequ 1769 . 2  |-  ( w  =  y  ->  ( [ w  /  x ] ph  <->  [ y  /  x ] ph ) )
42, 3dvelimor 1943 1  |-  ( A. z  z  =  y  \/  F/ z [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    \/ wo 665   A.wal 1288   F/wnf 1395   [wsb 1693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator