ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb4or Unicode version

Theorem nfsb4or 2072
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.)
Hypothesis
Ref Expression
nfsb4or.1  |-  F/ z
ph
Assertion
Ref Expression
nfsb4or  |-  ( A. z  z  =  y  \/  F/ z [ y  /  x ] ph )

Proof of Theorem nfsb4or
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfsb4or.1 . . 3  |-  F/ z
ph
21nfsb 1997 . 2  |-  F/ z [ w  /  x ] ph
3 sbequ 1886 . 2  |-  ( w  =  y  ->  ( [ w  /  x ] ph  <->  [ y  /  x ] ph ) )
42, 3dvelimor 2069 1  |-  ( A. z  z  =  y  \/  F/ z [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    \/ wo 713   A.wal 1393   F/wnf 1506   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator