ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb4or GIF version

Theorem nfsb4or 2014
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.)
Hypothesis
Ref Expression
nfsb4or.1 𝑧𝜑
Assertion
Ref Expression
nfsb4or (∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑥]𝜑)

Proof of Theorem nfsb4or
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfsb4or.1 . . 3 𝑧𝜑
21nfsb 1939 . 2 𝑧[𝑤 / 𝑥]𝜑
3 sbequ 1833 . 2 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
42, 3dvelimor 2011 1 (∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wo 703  wal 1346  wnf 1453  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator