Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsb4or | GIF version |
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.) |
Ref | Expression |
---|---|
nfsb4or.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsb4or | ⊢ (∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb4or.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfsb 1934 | . 2 ⊢ Ⅎ𝑧[𝑤 / 𝑥]𝜑 |
3 | sbequ 1828 | . 2 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | dvelimor 2006 | 1 ⊢ (∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 ∀wal 1341 Ⅎwnf 1448 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |