ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssne1 Unicode version

Theorem nssne1 3186
Description: Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne1  |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C
)

Proof of Theorem nssne1
StepHypRef Expression
1 sseq2 3152 . . . 4  |-  ( B  =  C  ->  ( A  C_  B  <->  A  C_  C
) )
21biimpcd 158 . . 3  |-  ( A 
C_  B  ->  ( B  =  C  ->  A 
C_  C ) )
32necon3bd 2370 . 2  |-  ( A 
C_  B  ->  ( -.  A  C_  C  ->  B  =/=  C ) )
43imp 123 1  |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1335    =/= wne 2327    C_ wss 3102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-ne 2328  df-in 3108  df-ss 3115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator