ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssne1 Unicode version

Theorem nssne1 3228
Description: Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne1  |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C
)

Proof of Theorem nssne1
StepHypRef Expression
1 sseq2 3194 . . . 4  |-  ( B  =  C  ->  ( A  C_  B  <->  A  C_  C
) )
21biimpcd 159 . . 3  |-  ( A 
C_  B  ->  ( B  =  C  ->  A 
C_  C ) )
32necon3bd 2403 . 2  |-  ( A 
C_  B  ->  ( -.  A  C_  C  ->  B  =/=  C ) )
43imp 124 1  |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    =/= wne 2360    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-ne 2361  df-in 3150  df-ss 3157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator