ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssne1 Unicode version

Theorem nssne1 3215
Description: Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne1  |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C
)

Proof of Theorem nssne1
StepHypRef Expression
1 sseq2 3181 . . . 4  |-  ( B  =  C  ->  ( A  C_  B  <->  A  C_  C
) )
21biimpcd 159 . . 3  |-  ( A 
C_  B  ->  ( B  =  C  ->  A 
C_  C ) )
32necon3bd 2390 . 2  |-  ( A 
C_  B  ->  ( -.  A  C_  C  ->  B  =/=  C ) )
43imp 124 1  |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    =/= wne 2347    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-ne 2348  df-in 3137  df-ss 3144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator