ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2i Unicode version

Theorem eqimss2i 3199
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1  |-  A  =  B
Assertion
Ref Expression
eqimss2i  |-  B  C_  A

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3162 . 2  |-  B  C_  B
2 eqimssi.1 . 2  |-  A  =  B
31, 2sseqtrri 3177 1  |-  B  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  cocnvres  5128  cocnvss  5129  fsum3  11328  prodfclim1  11485  ef0lem  11601  restid  12567  hmeores  12955
  Copyright terms: Public domain W3C validator