Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqimss2i | Unicode version |
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 |
Ref | Expression |
---|---|
eqimss2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3162 | . 2 | |
2 | eqimssi.1 | . 2 | |
3 | 1, 2 | sseqtrri 3177 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: cocnvres 5128 cocnvss 5129 fsum3 11328 prodfclim1 11485 ef0lem 11601 restid 12567 hmeores 12955 |
Copyright terms: Public domain | W3C validator |