ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2i Unicode version

Theorem eqimss2i 3250
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1  |-  A  =  B
Assertion
Ref Expression
eqimss2i  |-  B  C_  A

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3213 . 2  |-  B  C_  B
2 eqimssi.1 . 2  |-  A  =  B
31, 2sseqtrri 3228 1  |-  B  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  cocnvres  5207  cocnvss  5208  fsum3  11698  prodfclim1  11855  ef0lem  11971  restid  13082  hmeores  14787  struct2slots2dom  15635  struct2griedg  15643
  Copyright terms: Public domain W3C validator