ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2i Unicode version

Theorem eqimss2i 3258
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1  |-  A  =  B
Assertion
Ref Expression
eqimss2i  |-  B  C_  A

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3221 . 2  |-  B  C_  B
2 eqimssi.1 . 2  |-  A  =  B
31, 2sseqtrri 3236 1  |-  B  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  cocnvres  5226  cocnvss  5227  fsum3  11813  prodfclim1  11970  ef0lem  12086  restid  13197  hmeores  14902  struct2slots2dom  15752  struct2griedg  15760
  Copyright terms: Public domain W3C validator