ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssne1 GIF version

Theorem nssne1 3252
Description: Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)

Proof of Theorem nssne1
StepHypRef Expression
1 sseq2 3218 . . . 4 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
21biimpcd 159 . . 3 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
32necon3bd 2420 . 2 (𝐴𝐵 → (¬ 𝐴𝐶𝐵𝐶))
43imp 124 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wne 2377  wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ne 2378  df-in 3173  df-ss 3180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator