ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssne1 GIF version

Theorem nssne1 3200
Description: Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)

Proof of Theorem nssne1
StepHypRef Expression
1 sseq2 3166 . . . 4 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
21biimpcd 158 . . 3 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
32necon3bd 2379 . 2 (𝐴𝐵 → (¬ 𝐴𝐶𝐵𝐶))
43imp 123 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wne 2336  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ne 2337  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator