ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssne1 GIF version

Theorem nssne1 3241
Description: Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)

Proof of Theorem nssne1
StepHypRef Expression
1 sseq2 3207 . . . 4 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
21biimpcd 159 . . 3 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
32necon3bd 2410 . 2 (𝐴𝐵 → (¬ 𝐴𝐶𝐵𝐶))
43imp 124 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wne 2367  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ne 2368  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator