| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | Unicode version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3200 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | sstr2 3200 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | anim12i 338 |
. 2
|
| 6 | eqss 3208 |
. 2
| |
| 7 | dfbi2 388 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sseq12 3218 sseq2i 3220 sseq2d 3223 sseqtrid 3243 nssne1 3251 sseq0 3502 un00 3507 pweq 3619 ssintab 3902 ssintub 3903 intmin 3905 treq 4148 ssexg 4183 exmidundif 4250 frforeq3 4394 frirrg 4397 iunpw 4527 ordtri2orexmid 4571 ontr2exmid 4573 onsucsssucexmid 4575 ordtri2or2exmid 4619 ontri2orexmidim 4620 iotaexab 5250 fununi 5342 funcnvuni 5343 feq3 5410 ssimaexg 5641 nnawordex 6615 ereq1 6627 xpider 6693 domeng 6841 ssfiexmid 6973 fisseneq 7031 sbthlemi4 7062 sbthlemi5 7063 nninfninc 7225 acfun 7319 onntri45 7353 ccfunen 7376 fprodssdc 11901 lspf 14151 lspval 14152 basis2 14520 eltg2 14525 clsval 14583 ntrcls0 14603 isnei 14616 neiint 14617 neipsm 14626 opnneissb 14627 opnssneib 14628 innei 14635 icnpimaex 14683 cnptoprest2 14712 neitx 14740 txcnp 14743 blssps 14899 blss 14900 metss 14966 metrest 14978 metcnp3 14983 bdssexg 15840 bj-nntrans 15887 bj-omtrans 15892 |
| Copyright terms: Public domain | W3C validator |