| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | Unicode version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3208 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | sstr2 3208 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | anim12i 338 |
. 2
|
| 6 | eqss 3216 |
. 2
| |
| 7 | dfbi2 388 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sseq12 3226 sseq2i 3228 sseq2d 3231 sseqtrid 3251 nssne1 3259 sseq0 3510 un00 3515 pweq 3629 ssintab 3916 ssintub 3917 intmin 3919 treq 4164 ssexg 4199 exmidundif 4266 frforeq3 4412 frirrg 4415 iunpw 4545 ordtri2orexmid 4589 ontr2exmid 4591 onsucsssucexmid 4593 ordtri2or2exmid 4637 ontri2orexmidim 4638 iotaexab 5269 fununi 5361 funcnvuni 5362 feq3 5430 ssimaexg 5664 nnawordex 6638 ereq1 6650 xpider 6716 domeng 6864 ssfiexmid 6999 fisseneq 7057 sbthlemi4 7088 sbthlemi5 7089 nninfninc 7251 acfun 7350 onntri45 7387 ccfunen 7411 fprodssdc 12016 lspf 14266 lspval 14267 basis2 14635 eltg2 14640 clsval 14698 ntrcls0 14718 isnei 14731 neiint 14732 neipsm 14741 opnneissb 14742 opnssneib 14743 innei 14750 icnpimaex 14798 cnptoprest2 14827 neitx 14855 txcnp 14858 blssps 15014 blss 15015 metss 15081 metrest 15093 metcnp3 15098 upgredgpr 15853 bdssexg 16039 bj-nntrans 16086 bj-omtrans 16091 |
| Copyright terms: Public domain | W3C validator |