| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | Unicode version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3200 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | sstr2 3200 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | anim12i 338 |
. 2
|
| 6 | eqss 3208 |
. 2
| |
| 7 | dfbi2 388 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sseq12 3218 sseq2i 3220 sseq2d 3223 sseqtrid 3243 nssne1 3251 sseq0 3502 un00 3507 pweq 3619 ssintab 3902 ssintub 3903 intmin 3905 treq 4149 ssexg 4184 exmidundif 4251 frforeq3 4395 frirrg 4398 iunpw 4528 ordtri2orexmid 4572 ontr2exmid 4574 onsucsssucexmid 4576 ordtri2or2exmid 4620 ontri2orexmidim 4621 iotaexab 5251 fununi 5343 funcnvuni 5344 feq3 5412 ssimaexg 5643 nnawordex 6617 ereq1 6629 xpider 6695 domeng 6843 ssfiexmid 6975 fisseneq 7033 sbthlemi4 7064 sbthlemi5 7065 nninfninc 7227 acfun 7321 onntri45 7355 ccfunen 7378 fprodssdc 11934 lspf 14184 lspval 14185 basis2 14553 eltg2 14558 clsval 14616 ntrcls0 14636 isnei 14649 neiint 14650 neipsm 14659 opnneissb 14660 opnssneib 14661 innei 14668 icnpimaex 14716 cnptoprest2 14745 neitx 14773 txcnp 14776 blssps 14932 blss 14933 metss 14999 metrest 15011 metcnp3 15016 bdssexg 15877 bj-nntrans 15924 bj-omtrans 15929 |
| Copyright terms: Public domain | W3C validator |