| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | Unicode version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3231 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | sstr2 3231 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | anim12i 338 |
. 2
|
| 6 | eqss 3239 |
. 2
| |
| 7 | dfbi2 388 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12 3249 sseq2i 3251 sseq2d 3254 sseqtrid 3274 nssne1 3282 sseq0 3533 un00 3538 pweq 3652 ssintab 3940 ssintub 3941 intmin 3943 treq 4188 ssexg 4223 exmidundif 4290 frforeq3 4438 frirrg 4441 iunpw 4571 ordtri2orexmid 4615 ontr2exmid 4617 onsucsssucexmid 4619 ordtri2or2exmid 4663 ontri2orexmidim 4664 iotaexab 5297 fununi 5389 funcnvuni 5390 feq3 5458 ssimaexg 5696 nnawordex 6675 ereq1 6687 xpider 6753 domeng 6901 ssfiexmid 7038 fisseneq 7096 sbthlemi4 7127 sbthlemi5 7128 nninfninc 7290 acfun 7389 onntri45 7426 ccfunen 7450 fprodssdc 12101 lspf 14353 lspval 14354 basis2 14722 eltg2 14727 clsval 14785 ntrcls0 14805 isnei 14818 neiint 14819 neipsm 14828 opnneissb 14829 opnssneib 14830 innei 14837 icnpimaex 14885 cnptoprest2 14914 neitx 14942 txcnp 14945 blssps 15101 blss 15102 metss 15168 metrest 15180 metcnp3 15185 upgredgpr 15947 wlkvtxiedg 16056 wlkvtxiedgg 16057 bdssexg 16267 bj-nntrans 16314 bj-omtrans 16319 |
| Copyright terms: Public domain | W3C validator |