ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssr GIF version

Theorem nssr 3099
Description: Negation of subclass relationship. One direction of Exercise 13 of [TakeutiZaring] p. 18. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
nssr (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nssr
StepHypRef Expression
1 exanaliim 1590 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ ∀𝑥(𝑥𝐴𝑥𝐵))
2 dfss2 3028 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2sylnibr 640 1 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1294  wex 1433  wcel 1445  wss 3013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-11 1449  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-in 3019  df-ss 3026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator