| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nssr | GIF version | ||
| Description: Negation of subclass relationship. One direction of Exercise 13 of [TakeutiZaring] p. 18. (Contributed by Jim Kingdon, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| nssr | ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exanaliim 1673 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | ssalel 3192 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | sylnibr 681 | 1 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1373 ∃wex 1518 ∈ wcel 2180 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |