ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onssi Unicode version

Theorem onssi 4563
Description: An ordinal number is a subset of  On. (Contributed by NM, 11-Aug-1994.)
Hypothesis
Ref Expression
onssi.1  |-  A  e.  On
Assertion
Ref Expression
onssi  |-  A  C_  On

Proof of Theorem onssi
StepHypRef Expression
1 onssi.1 . 2  |-  A  e.  On
2 onss 4541 . 2  |-  ( A  e.  On  ->  A  C_  On )
31, 2ax-mp 5 1  |-  A  C_  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2176    C_ wss 3166   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator