ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuci Unicode version

Theorem onsuci 4552
Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 4537 and onsucb 4539. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1  |-  A  e.  On
Assertion
Ref Expression
onsuci  |-  suc  A  e.  On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2  |-  A  e.  On
2 onsuc 4537 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
31, 2ax-mp 5 1  |-  suc  A  e.  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   Oncon0 4398   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  ordtri2orexmid  4559  onsucsssucexmid  4563  ordsoexmid  4598  ordtri2or2exmid  4607  ontri2orexmidim  4608  tfr0dm  6380  1on  6481  2on  6483  3on  6485  4on  6486  onntri35  7304  onntri45  7308  prarloclemarch2  7486
  Copyright terms: Public domain W3C validator