ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuci Unicode version

Theorem onsuci 4549
Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 4534 and onsucb 4536. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1  |-  A  e.  On
Assertion
Ref Expression
onsuci  |-  suc  A  e.  On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2  |-  A  e.  On
2 onsuc 4534 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
31, 2ax-mp 5 1  |-  suc  A  e.  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   Oncon0 4395   suc csuc 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-tr 4129  df-iord 4398  df-on 4400  df-suc 4403
This theorem is referenced by:  ordtri2orexmid  4556  onsucsssucexmid  4560  ordsoexmid  4595  ordtri2or2exmid  4604  ontri2orexmidim  4605  tfr0dm  6377  1on  6478  2on  6480  3on  6482  4on  6483  onntri35  7299  onntri45  7303  prarloclemarch2  7481
  Copyright terms: Public domain W3C validator