ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuci Unicode version

Theorem onsuci 4500
Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1  |-  A  e.  On
Assertion
Ref Expression
onsuci  |-  suc  A  e.  On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2  |-  A  e.  On
2 suceloni 4485 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
31, 2ax-mp 5 1  |-  suc  A  e.  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   Oncon0 4348   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by:  ordtri2orexmid  4507  onsucsssucexmid  4511  ordsoexmid  4546  ordtri2or2exmid  4555  ontri2orexmidim  4556  tfr0dm  6301  1on  6402  2on  6404  3on  6406  4on  6407  onntri35  7214  onntri45  7218  prarloclemarch2  7381
  Copyright terms: Public domain W3C validator