![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21fal | Unicode version |
Description: If a wff and its negation are provable, then falsum is provable. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21fal.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm2.21fal.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm2.21fal |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21fal.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm2.21fal.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | pm2.21dd 621 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
This theorem is referenced by: genpdisj 7535 suplocexprlemdisj 7732 suplocexprlemub 7735 suplocsrlem 7820 recvguniqlem 11016 resqrexlemoverl 11043 leabs 11096 climge0 11346 isprm5lem 12154 dedekindeulemeu 14371 dedekindicclemeu 14380 pw1nct 15024 |
Copyright terms: Public domain | W3C validator |