![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21fal | Unicode version |
Description: If a wff and its negation are provable, then falsum is provable. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21fal.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm2.21fal.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm2.21fal |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21fal.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm2.21fal.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | pm2.21dd 620 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 615 |
This theorem is referenced by: genpdisj 7519 suplocexprlemdisj 7716 suplocexprlemub 7719 suplocsrlem 7804 recvguniqlem 10996 resqrexlemoverl 11023 leabs 11076 climge0 11326 isprm5lem 12133 dedekindeulemeu 13971 dedekindicclemeu 13980 pw1nct 14612 |
Copyright terms: Public domain | W3C validator |