| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21fal | Unicode version | ||
| Description: If a wff and its negation are provable, then falsum is provable. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21fal.1 |
|
| pm2.21fal.2 |
|
| Ref | Expression |
|---|---|
| pm2.21fal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21fal.1 |
. 2
| |
| 2 | pm2.21fal.2 |
. 2
| |
| 3 | 1, 2 | pm2.21dd 621 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: genpdisj 7636 suplocexprlemdisj 7833 suplocexprlemub 7836 suplocsrlem 7921 recvguniqlem 11305 resqrexlemoverl 11332 leabs 11385 climge0 11636 isprm5lem 12463 dedekindeulemeu 15094 dedekindicclemeu 15103 pw1nct 15940 |
| Copyright terms: Public domain | W3C validator |