Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwnss | Unicode version |
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
pwnss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12 2231 | . . . . . . 7 | |
2 | 1 | anidms 395 | . . . . . 6 |
3 | 2 | notbid 657 | . . . . 5 |
4 | df-nel 2432 | . . . . . . 7 | |
5 | eleq12 2231 | . . . . . . . . 9 | |
6 | 5 | anidms 395 | . . . . . . . 8 |
7 | 6 | notbid 657 | . . . . . . 7 |
8 | 4, 7 | syl5bb 191 | . . . . . 6 |
9 | 8 | cbvrabv 2725 | . . . . 5 |
10 | 3, 9 | elrab2 2885 | . . . 4 |
11 | pclem6 1364 | . . . 4 | |
12 | 10, 11 | ax-mp 5 | . . 3 |
13 | ssel 3136 | . . 3 | |
14 | 12, 13 | mtoi 654 | . 2 |
15 | ssrab2 3227 | . . 3 | |
16 | elpw2g 4135 | . . 3 | |
17 | 15, 16 | mpbiri 167 | . 2 |
18 | 14, 17 | nsyl3 616 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wnel 2431 crab 2448 wss 3116 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-nel 2432 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: pwne 4139 pwuninel2 6250 |
Copyright terms: Public domain | W3C validator |