| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwnss | Unicode version | ||
| Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwnss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12 2294 |
. . . . . . 7
| |
| 2 | 1 | anidms 397 |
. . . . . 6
|
| 3 | 2 | notbid 671 |
. . . . 5
|
| 4 | df-nel 2496 |
. . . . . . 7
| |
| 5 | eleq12 2294 |
. . . . . . . . 9
| |
| 6 | 5 | anidms 397 |
. . . . . . . 8
|
| 7 | 6 | notbid 671 |
. . . . . . 7
|
| 8 | 4, 7 | bitrid 192 |
. . . . . 6
|
| 9 | 8 | cbvrabv 2798 |
. . . . 5
|
| 10 | 3, 9 | elrab2 2962 |
. . . 4
|
| 11 | pclem6 1416 |
. . . 4
| |
| 12 | 10, 11 | ax-mp 5 |
. . 3
|
| 13 | ssel 3218 |
. . 3
| |
| 14 | 12, 13 | mtoi 668 |
. 2
|
| 15 | ssrab2 3309 |
. . 3
| |
| 16 | elpw2g 4239 |
. . 3
| |
| 17 | 15, 16 | mpbiri 168 |
. 2
|
| 18 | 14, 17 | nsyl3 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-nel 2496 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: pwne 4243 pwuninel2 6418 |
| Copyright terms: Public domain | W3C validator |