ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwnss Unicode version

Theorem pwnss 4161
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwnss  |-  ( A  e.  V  ->  -.  ~P A  C_  A )

Proof of Theorem pwnss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq12 2242 . . . . . . 7  |-  ( ( y  =  { x  e.  A  |  x  e/  x }  /\  y  =  { x  e.  A  |  x  e/  x } )  ->  (
y  e.  y  <->  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
21anidms 397 . . . . . 6  |-  ( y  =  { x  e.  A  |  x  e/  x }  ->  ( y  e.  y  <->  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
32notbid 667 . . . . 5  |-  ( y  =  { x  e.  A  |  x  e/  x }  ->  ( -.  y  e.  y  <->  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
4 df-nel 2443 . . . . . . 7  |-  ( x  e/  x  <->  -.  x  e.  x )
5 eleq12 2242 . . . . . . . . 9  |-  ( ( x  =  y  /\  x  =  y )  ->  ( x  e.  x  <->  y  e.  y ) )
65anidms 397 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  x  <->  y  e.  y ) )
76notbid 667 . . . . . . 7  |-  ( x  =  y  ->  ( -.  x  e.  x  <->  -.  y  e.  y ) )
84, 7bitrid 192 . . . . . 6  |-  ( x  =  y  ->  (
x  e/  x  <->  -.  y  e.  y ) )
98cbvrabv 2738 . . . . 5  |-  { x  e.  A  |  x  e/  x }  =  {
y  e.  A  |  -.  y  e.  y }
103, 9elrab2 2898 . . . 4  |-  ( { x  e.  A  |  x  e/  x }  e.  { x  e.  A  |  x  e/  x }  <->  ( {
x  e.  A  |  x  e/  x }  e.  A  /\  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
11 pclem6 1374 . . . 4  |-  ( ( { x  e.  A  |  x  e/  x }  e.  { x  e.  A  |  x  e/  x }  <->  ( {
x  e.  A  |  x  e/  x }  e.  A  /\  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )  ->  -.  { x  e.  A  |  x  e/  x }  e.  A
)
1210, 11ax-mp 5 . . 3  |-  -.  {
x  e.  A  |  x  e/  x }  e.  A
13 ssel 3151 . . 3  |-  ( ~P A  C_  A  ->  ( { x  e.  A  |  x  e/  x }  e.  ~P A  ->  { x  e.  A  |  x  e/  x }  e.  A )
)
1412, 13mtoi 664 . 2  |-  ( ~P A  C_  A  ->  -. 
{ x  e.  A  |  x  e/  x }  e.  ~P A
)
15 ssrab2 3242 . . 3  |-  { x  e.  A  |  x  e/  x }  C_  A
16 elpw2g 4158 . . 3  |-  ( A  e.  V  ->  ( { x  e.  A  |  x  e/  x }  e.  ~P A  <->  { x  e.  A  |  x  e/  x }  C_  A ) )
1715, 16mpbiri 168 . 2  |-  ( A  e.  V  ->  { x  e.  A  |  x  e/  x }  e.  ~P A )
1814, 17nsyl3 626 1  |-  ( A  e.  V  ->  -.  ~P A  C_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    e/ wnel 2442   {crab 2459    C_ wss 3131   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-rab 2464  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  pwne  4162  pwuninel2  6285
  Copyright terms: Public domain W3C validator