ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwnss Unicode version

Theorem pwnss 4138
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwnss  |-  ( A  e.  V  ->  -.  ~P A  C_  A )

Proof of Theorem pwnss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq12 2231 . . . . . . 7  |-  ( ( y  =  { x  e.  A  |  x  e/  x }  /\  y  =  { x  e.  A  |  x  e/  x } )  ->  (
y  e.  y  <->  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
21anidms 395 . . . . . 6  |-  ( y  =  { x  e.  A  |  x  e/  x }  ->  ( y  e.  y  <->  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
32notbid 657 . . . . 5  |-  ( y  =  { x  e.  A  |  x  e/  x }  ->  ( -.  y  e.  y  <->  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
4 df-nel 2432 . . . . . . 7  |-  ( x  e/  x  <->  -.  x  e.  x )
5 eleq12 2231 . . . . . . . . 9  |-  ( ( x  =  y  /\  x  =  y )  ->  ( x  e.  x  <->  y  e.  y ) )
65anidms 395 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  x  <->  y  e.  y ) )
76notbid 657 . . . . . . 7  |-  ( x  =  y  ->  ( -.  x  e.  x  <->  -.  y  e.  y ) )
84, 7syl5bb 191 . . . . . 6  |-  ( x  =  y  ->  (
x  e/  x  <->  -.  y  e.  y ) )
98cbvrabv 2725 . . . . 5  |-  { x  e.  A  |  x  e/  x }  =  {
y  e.  A  |  -.  y  e.  y }
103, 9elrab2 2885 . . . 4  |-  ( { x  e.  A  |  x  e/  x }  e.  { x  e.  A  |  x  e/  x }  <->  ( {
x  e.  A  |  x  e/  x }  e.  A  /\  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
11 pclem6 1364 . . . 4  |-  ( ( { x  e.  A  |  x  e/  x }  e.  { x  e.  A  |  x  e/  x }  <->  ( {
x  e.  A  |  x  e/  x }  e.  A  /\  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )  ->  -.  { x  e.  A  |  x  e/  x }  e.  A
)
1210, 11ax-mp 5 . . 3  |-  -.  {
x  e.  A  |  x  e/  x }  e.  A
13 ssel 3136 . . 3  |-  ( ~P A  C_  A  ->  ( { x  e.  A  |  x  e/  x }  e.  ~P A  ->  { x  e.  A  |  x  e/  x }  e.  A )
)
1412, 13mtoi 654 . 2  |-  ( ~P A  C_  A  ->  -. 
{ x  e.  A  |  x  e/  x }  e.  ~P A
)
15 ssrab2 3227 . . 3  |-  { x  e.  A  |  x  e/  x }  C_  A
16 elpw2g 4135 . . 3  |-  ( A  e.  V  ->  ( { x  e.  A  |  x  e/  x }  e.  ~P A  <->  { x  e.  A  |  x  e/  x }  C_  A ) )
1715, 16mpbiri 167 . 2  |-  ( A  e.  V  ->  { x  e.  A  |  x  e/  x }  e.  ~P A )
1814, 17nsyl3 616 1  |-  ( A  e.  V  ->  -.  ~P A  C_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    e/ wnel 2431   {crab 2448    C_ wss 3116   ~Pcpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-nel 2432  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by:  pwne  4139  pwuninel2  6250
  Copyright terms: Public domain W3C validator