ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absle Unicode version

Theorem absle 11031
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )

Proof of Theorem absle
StepHypRef Expression
1 simpll 519 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  RR )
21renegcld 8278 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  e.  RR )
31recnd 7927 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  CC )
4 abscl 10993 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
53, 4syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  e.  RR )
6 simplr 520 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  B  e.  RR )
7 leabs 11016 . . . . . . 7  |-  ( -u A  e.  RR  ->  -u A  <_  ( abs `  -u A
) )
82, 7syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  -u A ) )
9 absneg 10992 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A
) )
103, 9syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  -u A
)  =  ( abs `  A ) )
118, 10breqtrd 4008 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  A ) )
12 simpr 109 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  <_  B )
132, 5, 6, 11, 12letrd 8022 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  B
)
14 leabs 11016 . . . . . 6  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
1514ad2antrr 480 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  ( abs `  A ) )
161, 5, 6, 15, 12letrd 8022 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  B )
1713, 16jca 304 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( -u A  <_  B  /\  A  <_  B
) )
18 simpll 519 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  RR )
19 simplr 520 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  B  e.  RR )
2018recnd 7927 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  CC )
2120, 4syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  e.  RR )
22 axltwlin 7966 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( abs `  A )  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( abs `  A
)  ->  ( B  <  A  \/  A  < 
( abs `  A
) ) ) )
2319, 21, 18, 22syl3anc 1228 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( B  <  A  \/  A  <  ( abs `  A ) ) ) )
24 simprr 522 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  <_  B )
2518, 19lenltd 8016 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
2624, 25mpbid 146 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  A )
27 pm2.53 712 . . . . . . . . 9  |-  ( ( B  <  A  \/  A  <  ( abs `  A
) )  ->  ( -.  B  <  A  ->  A  <  ( abs `  A
) ) )
2823, 26, 27syl6ci 1433 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  A  <  ( abs `  A
) ) )
29 simpl 108 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  RR )
3029recnd 7927 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  CC )
3130, 9syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  =  ( abs `  A
) )
3229renegcld 8278 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  -u A  e.  RR )
33 0red 7900 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  e.  RR )
34 ltabs 11029 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <  0 )
3529, 33, 34ltled 8017 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <_  0 )
3629le0neg1d 8415 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( A  <_  0  <->  0  <_  -u A ) )
3735, 36mpbid 146 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  <_ 
-u A )
38 absid 11013 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  0  <_  -u A )  ->  ( abs `  -u A
)  =  -u A
)
3932, 37, 38syl2anc 409 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  = 
-u A )
4031, 39eqtr3d 2200 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  A )  = 
-u A )
4118, 28, 40syl6an 1422 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  =  -u A
) )
42 simprl 521 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -u A  <_  B )
43 breq1 3985 . . . . . . . 8  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  <_  B  <->  -u A  <_  B ) )
4442, 43syl5ibrcom 156 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  =  -u A  ->  ( abs `  A
)  <_  B )
)
4541, 44syld 45 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  <_  B )
)
4621, 19lenltd 8016 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  <_  B  <->  -.  B  <  ( abs `  A
) ) )
4745, 46sylibd 148 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  -.  B  <  ( abs `  A ) ) )
4847pm2.01d 608 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  ( abs `  A ) )
4948, 46mpbird 166 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  <_  B )
5017, 49impbida 586 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u A  <_  B  /\  A  <_  B ) ) )
51 lenegcon1 8364 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  <_  B 
<-> 
-u B  <_  A
) )
5251anbi1d 461 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  <_  B  /\  A  <_  B )  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
5350, 52bitrd 187 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188   CCcc 7751   RRcr 7752   0cc0 7753    < clt 7933    <_ cle 7934   -ucneg 8070   abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  absdifle  11035  lenegsq  11037  abs2difabs  11050  abslei  11081  absled  11117  dfabsmax  11159  rpabscxpbnd  13499
  Copyright terms: Public domain W3C validator