ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absle Unicode version

Theorem absle 10854
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )

Proof of Theorem absle
StepHypRef Expression
1 simpll 518 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  RR )
21renegcld 8135 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  e.  RR )
31recnd 7787 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  CC )
4 abscl 10816 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
53, 4syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  e.  RR )
6 simplr 519 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  B  e.  RR )
7 leabs 10839 . . . . . . 7  |-  ( -u A  e.  RR  ->  -u A  <_  ( abs `  -u A
) )
82, 7syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  -u A ) )
9 absneg 10815 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A
) )
103, 9syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  -u A
)  =  ( abs `  A ) )
118, 10breqtrd 3949 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  A ) )
12 simpr 109 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  <_  B )
132, 5, 6, 11, 12letrd 7879 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  B
)
14 leabs 10839 . . . . . 6  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
1514ad2antrr 479 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  ( abs `  A ) )
161, 5, 6, 15, 12letrd 7879 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  B )
1713, 16jca 304 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( -u A  <_  B  /\  A  <_  B
) )
18 simpll 518 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  RR )
19 simplr 519 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  B  e.  RR )
2018recnd 7787 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  CC )
2120, 4syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  e.  RR )
22 axltwlin 7825 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( abs `  A )  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( abs `  A
)  ->  ( B  <  A  \/  A  < 
( abs `  A
) ) ) )
2319, 21, 18, 22syl3anc 1216 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( B  <  A  \/  A  <  ( abs `  A ) ) ) )
24 simprr 521 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  <_  B )
2518, 19lenltd 7873 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
2624, 25mpbid 146 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  A )
27 pm2.53 711 . . . . . . . . 9  |-  ( ( B  <  A  \/  A  <  ( abs `  A
) )  ->  ( -.  B  <  A  ->  A  <  ( abs `  A
) ) )
2823, 26, 27syl6ci 1421 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  A  <  ( abs `  A
) ) )
29 simpl 108 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  RR )
3029recnd 7787 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  CC )
3130, 9syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  =  ( abs `  A
) )
3229renegcld 8135 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  -u A  e.  RR )
33 0red 7760 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  e.  RR )
34 ltabs 10852 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <  0 )
3529, 33, 34ltled 7874 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <_  0 )
3629le0neg1d 8272 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( A  <_  0  <->  0  <_  -u A ) )
3735, 36mpbid 146 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  <_ 
-u A )
38 absid 10836 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  0  <_  -u A )  ->  ( abs `  -u A
)  =  -u A
)
3932, 37, 38syl2anc 408 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  = 
-u A )
4031, 39eqtr3d 2172 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  A )  = 
-u A )
4118, 28, 40syl6an 1410 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  =  -u A
) )
42 simprl 520 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -u A  <_  B )
43 breq1 3927 . . . . . . . 8  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  <_  B  <->  -u A  <_  B ) )
4442, 43syl5ibrcom 156 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  =  -u A  ->  ( abs `  A
)  <_  B )
)
4541, 44syld 45 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  <_  B )
)
4621, 19lenltd 7873 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  <_  B  <->  -.  B  <  ( abs `  A
) ) )
4745, 46sylibd 148 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  -.  B  <  ( abs `  A ) ) )
4847pm2.01d 607 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  ( abs `  A ) )
4948, 46mpbird 166 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  <_  B )
5017, 49impbida 585 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u A  <_  B  /\  A  <_  B ) ) )
51 lenegcon1 8221 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  <_  B 
<-> 
-u B  <_  A
) )
5251anbi1d 460 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  <_  B  /\  A  <_  B )  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
5350, 52bitrd 187 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   class class class wbr 3924   ` cfv 5118   CCcc 7611   RRcr 7612   0cc0 7613    < clt 7793    <_ cle 7794   -ucneg 7927   abscabs 10762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by:  absdifle  10858  lenegsq  10860  abs2difabs  10873  abslei  10904  absled  10940  dfabsmax  10982
  Copyright terms: Public domain W3C validator