ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absle Unicode version

Theorem absle 11271
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )

Proof of Theorem absle
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  RR )
21renegcld 8423 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  e.  RR )
31recnd 8072 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  CC )
4 abscl 11233 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
53, 4syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  e.  RR )
6 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  B  e.  RR )
7 leabs 11256 . . . . . . 7  |-  ( -u A  e.  RR  ->  -u A  <_  ( abs `  -u A
) )
82, 7syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  -u A ) )
9 absneg 11232 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A
) )
103, 9syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  -u A
)  =  ( abs `  A ) )
118, 10breqtrd 4060 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  A ) )
12 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  <_  B )
132, 5, 6, 11, 12letrd 8167 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  B
)
14 leabs 11256 . . . . . 6  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
1514ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  ( abs `  A ) )
161, 5, 6, 15, 12letrd 8167 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  B )
1713, 16jca 306 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( -u A  <_  B  /\  A  <_  B
) )
18 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  RR )
19 simplr 528 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  B  e.  RR )
2018recnd 8072 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  CC )
2120, 4syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  e.  RR )
22 axltwlin 8111 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( abs `  A )  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( abs `  A
)  ->  ( B  <  A  \/  A  < 
( abs `  A
) ) ) )
2319, 21, 18, 22syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( B  <  A  \/  A  <  ( abs `  A ) ) ) )
24 simprr 531 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  <_  B )
2518, 19lenltd 8161 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
2624, 25mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  A )
27 pm2.53 723 . . . . . . . . 9  |-  ( ( B  <  A  \/  A  <  ( abs `  A
) )  ->  ( -.  B  <  A  ->  A  <  ( abs `  A
) ) )
2823, 26, 27syl6ci 1456 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  A  <  ( abs `  A
) ) )
29 simpl 109 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  RR )
3029recnd 8072 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  CC )
3130, 9syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  =  ( abs `  A
) )
3229renegcld 8423 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  -u A  e.  RR )
33 0red 8044 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  e.  RR )
34 ltabs 11269 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <  0 )
3529, 33, 34ltled 8162 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <_  0 )
3629le0neg1d 8561 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( A  <_  0  <->  0  <_  -u A ) )
3735, 36mpbid 147 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  <_ 
-u A )
38 absid 11253 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  0  <_  -u A )  ->  ( abs `  -u A
)  =  -u A
)
3932, 37, 38syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  = 
-u A )
4031, 39eqtr3d 2231 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  A )  = 
-u A )
4118, 28, 40syl6an 1445 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  =  -u A
) )
42 simprl 529 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -u A  <_  B )
43 breq1 4037 . . . . . . . 8  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  <_  B  <->  -u A  <_  B ) )
4442, 43syl5ibrcom 157 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  =  -u A  ->  ( abs `  A
)  <_  B )
)
4541, 44syld 45 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  <_  B )
)
4621, 19lenltd 8161 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  <_  B  <->  -.  B  <  ( abs `  A
) ) )
4745, 46sylibd 149 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  -.  B  <  ( abs `  A ) ) )
4847pm2.01d 619 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  ( abs `  A ) )
4948, 46mpbird 167 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  <_  B )
5017, 49impbida 596 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u A  <_  B  /\  A  <_  B ) ) )
51 lenegcon1 8510 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  <_  B 
<-> 
-u B  <_  A
) )
5251anbi1d 465 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  <_  B  /\  A  <_  B )  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
5350, 52bitrd 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259   CCcc 7894   RRcr 7895   0cc0 7896    < clt 8078    <_ cle 8079   -ucneg 8215   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  absdifle  11275  lenegsq  11277  abs2difabs  11290  abslei  11321  absled  11357  dfabsmax  11399  rpabscxpbnd  15260  lgseisen  15399
  Copyright terms: Public domain W3C validator