Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprabidlem | Unicode version |
Description: Slight elaboration of exdistrfor 1793. A lemma for oprabid 5882. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
oprabidlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bndl 1502 | . . 3 | |
2 | ax-10 1498 | . . . 4 | |
3 | dtru 4542 | . . . . . 6 | |
4 | pm2.53 717 | . . . . . 6 | |
5 | 3, 4 | mpi 15 | . . . . 5 |
6 | df-nf 1454 | . . . . . 6 | |
7 | 6 | albii 1463 | . . . . 5 |
8 | 5, 7 | sylibr 133 | . . . 4 |
9 | 2, 8 | orim12i 754 | . . 3 |
10 | 1, 9 | ax-mp 5 | . 2 |
11 | 10 | exdistrfor 1793 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wal 1346 wnf 1453 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 |
This theorem is referenced by: oprabid 5882 |
Copyright terms: Public domain | W3C validator |