ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabidlem Unicode version

Theorem oprabidlem 5953
Description: Slight elaboration of exdistrfor 1814. A lemma for oprabid 5954. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
oprabidlem  |-  ( E. x E. y ( x  =  z  /\  ps )  ->  E. x
( x  =  z  /\  E. y ps ) )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ps( x, y, z)

Proof of Theorem oprabidlem
StepHypRef Expression
1 ax-bndl 1523 . . 3  |-  ( A. y  y  =  x  \/  ( A. y  y  =  z  \/  A. x A. y ( x  =  z  ->  A. y  x  =  z )
) )
2 ax-10 1519 . . . 4  |-  ( A. y  y  =  x  ->  A. x  x  =  y )
3 dtru 4596 . . . . . 6  |-  -.  A. y  y  =  z
4 pm2.53 723 . . . . . 6  |-  ( ( A. y  y  =  z  \/  A. x A. y ( x  =  z  ->  A. y  x  =  z )
)  ->  ( -.  A. y  y  =  z  ->  A. x A. y
( x  =  z  ->  A. y  x  =  z ) ) )
53, 4mpi 15 . . . . 5  |-  ( ( A. y  y  =  z  \/  A. x A. y ( x  =  z  ->  A. y  x  =  z )
)  ->  A. x A. y ( x  =  z  ->  A. y  x  =  z )
)
6 df-nf 1475 . . . . . 6  |-  ( F/ y  x  =  z  <->  A. y ( x  =  z  ->  A. y  x  =  z )
)
76albii 1484 . . . . 5  |-  ( A. x F/ y  x  =  z  <->  A. x A. y
( x  =  z  ->  A. y  x  =  z ) )
85, 7sylibr 134 . . . 4  |-  ( ( A. y  y  =  z  \/  A. x A. y ( x  =  z  ->  A. y  x  =  z )
)  ->  A. x F/ y  x  =  z )
92, 8orim12i 760 . . 3  |-  ( ( A. y  y  =  x  \/  ( A. y  y  =  z  \/  A. x A. y
( x  =  z  ->  A. y  x  =  z ) ) )  ->  ( A. x  x  =  y  \/  A. x F/ y  x  =  z ) )
101, 9ax-mp 5 . 2  |-  ( A. x  x  =  y  \/  A. x F/ y  x  =  z )
1110exdistrfor 1814 1  |-  ( E. x E. y ( x  =  z  /\  ps )  ->  E. x
( x  =  z  /\  E. y ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362   F/wnf 1474   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628
This theorem is referenced by:  oprabid  5954
  Copyright terms: Public domain W3C validator