ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabidlem Unicode version

Theorem oprabidlem 5662
Description: Slight elaboration of exdistrfor 1728. A lemma for oprabid 5663. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
oprabidlem  |-  ( E. x E. y ( x  =  z  /\  ps )  ->  E. x
( x  =  z  /\  E. y ps ) )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ps( x, y, z)

Proof of Theorem oprabidlem
StepHypRef Expression
1 ax-bndl 1444 . . 3  |-  ( A. y  y  =  x  \/  ( A. y  y  =  z  \/  A. x A. y ( x  =  z  ->  A. y  x  =  z )
) )
2 ax-10 1441 . . . 4  |-  ( A. y  y  =  x  ->  A. x  x  =  y )
3 dtru 4366 . . . . . 6  |-  -.  A. y  y  =  z
4 pm2.53 676 . . . . . 6  |-  ( ( A. y  y  =  z  \/  A. x A. y ( x  =  z  ->  A. y  x  =  z )
)  ->  ( -.  A. y  y  =  z  ->  A. x A. y
( x  =  z  ->  A. y  x  =  z ) ) )
53, 4mpi 15 . . . . 5  |-  ( ( A. y  y  =  z  \/  A. x A. y ( x  =  z  ->  A. y  x  =  z )
)  ->  A. x A. y ( x  =  z  ->  A. y  x  =  z )
)
6 df-nf 1395 . . . . . 6  |-  ( F/ y  x  =  z  <->  A. y ( x  =  z  ->  A. y  x  =  z )
)
76albii 1404 . . . . 5  |-  ( A. x F/ y  x  =  z  <->  A. x A. y
( x  =  z  ->  A. y  x  =  z ) )
85, 7sylibr 132 . . . 4  |-  ( ( A. y  y  =  z  \/  A. x A. y ( x  =  z  ->  A. y  x  =  z )
)  ->  A. x F/ y  x  =  z )
92, 8orim12i 711 . . 3  |-  ( ( A. y  y  =  x  \/  ( A. y  y  =  z  \/  A. x A. y
( x  =  z  ->  A. y  x  =  z ) ) )  ->  ( A. x  x  =  y  \/  A. x F/ y  x  =  z ) )
101, 9ax-mp 7 . 2  |-  ( A. x  x  =  y  \/  A. x F/ y  x  =  z )
1110exdistrfor 1728 1  |-  ( E. x E. y ( x  =  z  /\  ps )  ->  E. x
( x  =  z  /\  E. y ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664   A.wal 1287   F/wnf 1394   E.wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-v 2621  df-dif 2999  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447
This theorem is referenced by:  oprabid  5663
  Copyright terms: Public domain W3C validator