Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprabidlem | Unicode version |
Description: Slight elaboration of exdistrfor 1788. A lemma for oprabid 5874. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
oprabidlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bndl 1497 | . . 3 | |
2 | ax-10 1493 | . . . 4 | |
3 | dtru 4537 | . . . . . 6 | |
4 | pm2.53 712 | . . . . . 6 | |
5 | 3, 4 | mpi 15 | . . . . 5 |
6 | df-nf 1449 | . . . . . 6 | |
7 | 6 | albii 1458 | . . . . 5 |
8 | 5, 7 | sylibr 133 | . . . 4 |
9 | 2, 8 | orim12i 749 | . . 3 |
10 | 1, 9 | ax-mp 5 | . 2 |
11 | 10 | exdistrfor 1788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1341 wnf 1448 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 |
This theorem is referenced by: oprabid 5874 |
Copyright terms: Public domain | W3C validator |