| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabidlem | Unicode version | ||
| Description: Slight elaboration of exdistrfor 1824. A lemma for oprabid 5999. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| oprabidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bndl 1533 |
. . 3
| |
| 2 | ax-10 1529 |
. . . 4
| |
| 3 | dtru 4626 |
. . . . . 6
| |
| 4 | pm2.53 724 |
. . . . . 6
| |
| 5 | 3, 4 | mpi 15 |
. . . . 5
|
| 6 | df-nf 1485 |
. . . . . 6
| |
| 7 | 6 | albii 1494 |
. . . . 5
|
| 8 | 5, 7 | sylibr 134 |
. . . 4
|
| 9 | 2, 8 | orim12i 761 |
. . 3
|
| 10 | 1, 9 | ax-mp 5 |
. 2
|
| 11 | 10 | exdistrfor 1824 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 |
| This theorem is referenced by: oprabid 5999 |
| Copyright terms: Public domain | W3C validator |