ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omnimkv Unicode version

Theorem omnimkv 6980
Description: An omniscient set is Markov. In particular, the case where  A is  om means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
omnimkv  |-  ( A  e. Omni  ->  A  e. Markov )

Proof of Theorem omnimkv
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomni 6958 . . . 4  |-  ( A  e. Omni  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
21ibi 175 . . 3  |-  ( A  e. Omni  ->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) )
3 pm2.53 694 . . . . . . 7  |-  ( ( A. x  e.  A  ( f `  x
)  =  1o  \/  E. x  e.  A  ( f `  x )  =  (/) )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )
43orcoms 702 . . . . . 6  |-  ( ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )
54a1i 9 . . . . 5  |-  ( A  e. Omni  ->  ( ( E. x  e.  A  ( f `  x )  =  (/)  \/  A. x  e.  A  ( f `  x )  =  1o )  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
65imim2d 54 . . . 4  |-  ( A  e. Omni  ->  ( ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) )  -> 
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
76alimdv 1833 . . 3  |-  ( A  e. Omni  ->  ( A. f
( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  ->  A. f
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
82, 7mpd 13 . 2  |-  ( A  e. Omni  ->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )
9 ismkv 6977 . 2  |-  ( A  e. Omni  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
108, 9mpbird 166 1  |-  ( A  e. Omni  ->  A  e. Markov )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 680   A.wal 1312    = wceq 1314    e. wcel 1463   A.wral 2390   E.wrex 2391   (/)c0 3329   -->wf 5077   ` cfv 5081   1oc1o 6260   2oc2o 6261  Omnicomni 6954  Markovcmarkov 6975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-fn 5084  df-f 5085  df-omni 6956  df-markov 6976
This theorem is referenced by:  exmidmp  6981
  Copyright terms: Public domain W3C validator