ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omnimkv Unicode version

Theorem omnimkv 7120
Description: An omniscient set is Markov. In particular, the case where  A is  om means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
omnimkv  |-  ( A  e. Omni  ->  A  e. Markov )

Proof of Theorem omnimkv
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomni 7100 . . . 4  |-  ( A  e. Omni  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
21ibi 175 . . 3  |-  ( A  e. Omni  ->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) )
3 pm2.53 712 . . . . . . 7  |-  ( ( A. x  e.  A  ( f `  x
)  =  1o  \/  E. x  e.  A  ( f `  x )  =  (/) )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )
43orcoms 720 . . . . . 6  |-  ( ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )
54a1i 9 . . . . 5  |-  ( A  e. Omni  ->  ( ( E. x  e.  A  ( f `  x )  =  (/)  \/  A. x  e.  A  ( f `  x )  =  1o )  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
65imim2d 54 . . . 4  |-  ( A  e. Omni  ->  ( ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) )  -> 
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
76alimdv 1867 . . 3  |-  ( A  e. Omni  ->  ( A. f
( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  ->  A. f
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
82, 7mpd 13 . 2  |-  ( A  e. Omni  ->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )
9 ismkv 7117 . 2  |-  ( A  e. Omni  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
108, 9mpbird 166 1  |-  ( A  e. Omni  ->  A  e. Markov )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   (/)c0 3409   -->wf 5184   ` cfv 5188   1oc1o 6377   2oc2o 6378  Omnicomni 7098  Markovcmarkov 7115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-fn 5191  df-f 5192  df-omni 7099  df-markov 7116
This theorem is referenced by:  exmidmp  7121
  Copyright terms: Public domain W3C validator