ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omnimkv Unicode version

Theorem omnimkv 7258
Description: An omniscient set is Markov. In particular, the case where  A is  om means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
omnimkv  |-  ( A  e. Omni  ->  A  e. Markov )

Proof of Theorem omnimkv
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomni 7238 . . . 4  |-  ( A  e. Omni  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
21ibi 176 . . 3  |-  ( A  e. Omni  ->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) )
3 pm2.53 724 . . . . . . 7  |-  ( ( A. x  e.  A  ( f `  x
)  =  1o  \/  E. x  e.  A  ( f `  x )  =  (/) )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )
43orcoms 732 . . . . . 6  |-  ( ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )
54a1i 9 . . . . 5  |-  ( A  e. Omni  ->  ( ( E. x  e.  A  ( f `  x )  =  (/)  \/  A. x  e.  A  ( f `  x )  =  1o )  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
65imim2d 54 . . . 4  |-  ( A  e. Omni  ->  ( ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) )  -> 
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
76alimdv 1902 . . 3  |-  ( A  e. Omni  ->  ( A. f
( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  ->  A. f
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
82, 7mpd 13 . 2  |-  ( A  e. Omni  ->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )
9 ismkv 7255 . 2  |-  ( A  e. Omni  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
108, 9mpbird 167 1  |-  ( A  e. Omni  ->  A  e. Markov )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710   A.wal 1371    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   (/)c0 3460   -->wf 5267   ` cfv 5271   1oc1o 6495   2oc2o 6496  Omnicomni 7236  Markovcmarkov 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-fn 5274  df-f 5275  df-omni 7237  df-markov 7254
This theorem is referenced by:  exmidmp  7259
  Copyright terms: Public domain W3C validator