Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version |
Description: The converse of onsucelsucr 4485 implies excluded middle. On the other hand, if is constrained to be a natural number, instead of an arbitrary ordinal, then the converse of onsucelsucr 4485 does hold, as seen at nnsucelsuc 6459. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmid.1 |
Ref | Expression |
---|---|
onsucelsucexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsucelsucexmidlem1 4505 | . . . 4 | |
2 | 0elon 4370 | . . . . . 6 | |
3 | onsucelsucexmidlem 4506 | . . . . . 6 | |
4 | 2, 3 | pm3.2i 270 | . . . . 5 |
5 | onsucelsucexmid.1 | . . . . 5 | |
6 | eleq1 2229 | . . . . . . 7 | |
7 | suceq 4380 | . . . . . . . 8 | |
8 | 7 | eleq1d 2235 | . . . . . . 7 |
9 | 6, 8 | imbi12d 233 | . . . . . 6 |
10 | eleq2 2230 | . . . . . . 7 | |
11 | suceq 4380 | . . . . . . . 8 | |
12 | 11 | eleq2d 2236 | . . . . . . 7 |
13 | 10, 12 | imbi12d 233 | . . . . . 6 |
14 | 9, 13 | rspc2va 2844 | . . . . 5 |
15 | 4, 5, 14 | mp2an 423 | . . . 4 |
16 | 1, 15 | ax-mp 5 | . . 3 |
17 | elsuci 4381 | . . 3 | |
18 | 16, 17 | ax-mp 5 | . 2 |
19 | suc0 4389 | . . . . . 6 | |
20 | p0ex 4167 | . . . . . . 7 | |
21 | 20 | prid2 3683 | . . . . . 6 |
22 | 19, 21 | eqeltri 2239 | . . . . 5 |
23 | eqeq1 2172 | . . . . . . 7 | |
24 | 23 | orbi1d 781 | . . . . . 6 |
25 | 24 | elrab3 2883 | . . . . 5 |
26 | 22, 25 | ax-mp 5 | . . . 4 |
27 | 0ex 4109 | . . . . . . 7 | |
28 | nsuceq0g 4396 | . . . . . . 7 | |
29 | 27, 28 | ax-mp 5 | . . . . . 6 |
30 | df-ne 2337 | . . . . . 6 | |
31 | 29, 30 | mpbi 144 | . . . . 5 |
32 | pm2.53 712 | . . . . 5 | |
33 | 31, 32 | mpi 15 | . . . 4 |
34 | 26, 33 | sylbi 120 | . . 3 |
35 | 19 | eqeq1i 2173 | . . . . 5 |
36 | 19 | eqeq1i 2173 | . . . . . . . 8 |
37 | 31, 36 | mtbi 660 | . . . . . . 7 |
38 | 20 | elsn 3592 | . . . . . . 7 |
39 | 37, 38 | mtbir 661 | . . . . . 6 |
40 | eleq2 2230 | . . . . . 6 | |
41 | 39, 40 | mtbii 664 | . . . . 5 |
42 | 35, 41 | sylbi 120 | . . . 4 |
43 | olc 701 | . . . . 5 | |
44 | eqeq1 2172 | . . . . . . . 8 | |
45 | 44 | orbi1d 781 | . . . . . . 7 |
46 | 45 | elrab3 2883 | . . . . . 6 |
47 | 21, 46 | ax-mp 5 | . . . . 5 |
48 | 43, 47 | sylibr 133 | . . . 4 |
49 | 42, 48 | nsyl 618 | . . 3 |
50 | 34, 49 | orim12i 749 | . 2 |
51 | 18, 50 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wne 2336 wral 2444 crab 2448 cvv 2726 c0 3409 csn 3576 cpr 3577 con0 4341 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: ordsucunielexmid 4508 |
Copyright terms: Public domain | W3C validator |