| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version | ||
| Description: The converse of onsucelsucr 4554 implies excluded middle. On the other
hand, if |
| Ref | Expression |
|---|---|
| onsucelsucexmid.1 |
|
| Ref | Expression |
|---|---|
| onsucelsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucelsucexmidlem1 4574 |
. . . 4
| |
| 2 | 0elon 4437 |
. . . . . 6
| |
| 3 | onsucelsucexmidlem 4575 |
. . . . . 6
| |
| 4 | 2, 3 | pm3.2i 272 |
. . . . 5
|
| 5 | onsucelsucexmid.1 |
. . . . 5
| |
| 6 | eleq1 2267 |
. . . . . . 7
| |
| 7 | suceq 4447 |
. . . . . . . 8
| |
| 8 | 7 | eleq1d 2273 |
. . . . . . 7
|
| 9 | 6, 8 | imbi12d 234 |
. . . . . 6
|
| 10 | eleq2 2268 |
. . . . . . 7
| |
| 11 | suceq 4447 |
. . . . . . . 8
| |
| 12 | 11 | eleq2d 2274 |
. . . . . . 7
|
| 13 | 10, 12 | imbi12d 234 |
. . . . . 6
|
| 14 | 9, 13 | rspc2va 2890 |
. . . . 5
|
| 15 | 4, 5, 14 | mp2an 426 |
. . . 4
|
| 16 | 1, 15 | ax-mp 5 |
. . 3
|
| 17 | elsuci 4448 |
. . 3
| |
| 18 | 16, 17 | ax-mp 5 |
. 2
|
| 19 | suc0 4456 |
. . . . . 6
| |
| 20 | p0ex 4231 |
. . . . . . 7
| |
| 21 | 20 | prid2 3739 |
. . . . . 6
|
| 22 | 19, 21 | eqeltri 2277 |
. . . . 5
|
| 23 | eqeq1 2211 |
. . . . . . 7
| |
| 24 | 23 | orbi1d 792 |
. . . . . 6
|
| 25 | 24 | elrab3 2929 |
. . . . 5
|
| 26 | 22, 25 | ax-mp 5 |
. . . 4
|
| 27 | 0ex 4170 |
. . . . . . 7
| |
| 28 | nsuceq0g 4463 |
. . . . . . 7
| |
| 29 | 27, 28 | ax-mp 5 |
. . . . . 6
|
| 30 | df-ne 2376 |
. . . . . 6
| |
| 31 | 29, 30 | mpbi 145 |
. . . . 5
|
| 32 | pm2.53 723 |
. . . . 5
| |
| 33 | 31, 32 | mpi 15 |
. . . 4
|
| 34 | 26, 33 | sylbi 121 |
. . 3
|
| 35 | 19 | eqeq1i 2212 |
. . . . 5
|
| 36 | 19 | eqeq1i 2212 |
. . . . . . . 8
|
| 37 | 31, 36 | mtbi 671 |
. . . . . . 7
|
| 38 | 20 | elsn 3648 |
. . . . . . 7
|
| 39 | 37, 38 | mtbir 672 |
. . . . . 6
|
| 40 | eleq2 2268 |
. . . . . 6
| |
| 41 | 39, 40 | mtbii 675 |
. . . . 5
|
| 42 | 35, 41 | sylbi 121 |
. . . 4
|
| 43 | olc 712 |
. . . . 5
| |
| 44 | eqeq1 2211 |
. . . . . . . 8
| |
| 45 | 44 | orbi1d 792 |
. . . . . . 7
|
| 46 | 45 | elrab3 2929 |
. . . . . 6
|
| 47 | 21, 46 | ax-mp 5 |
. . . . 5
|
| 48 | 43, 47 | sylibr 134 |
. . . 4
|
| 49 | 42, 48 | nsyl 629 |
. . 3
|
| 50 | 34, 49 | orim12i 760 |
. 2
|
| 51 | 18, 50 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4411 df-on 4413 df-suc 4416 |
| This theorem is referenced by: ordsucunielexmid 4577 |
| Copyright terms: Public domain | W3C validator |