| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version | ||
| Description: The converse of onsucelsucr 4544 implies excluded middle.  On the other
       hand, if  | 
| Ref | Expression | 
|---|---|
| onsucelsucexmid.1 | 
 | 
| Ref | Expression | 
|---|---|
| onsucelsucexmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onsucelsucexmidlem1 4564 | 
. . . 4
 | |
| 2 | 0elon 4427 | 
. . . . . 6
 | |
| 3 | onsucelsucexmidlem 4565 | 
. . . . . 6
 | |
| 4 | 2, 3 | pm3.2i 272 | 
. . . . 5
 | 
| 5 | onsucelsucexmid.1 | 
. . . . 5
 | |
| 6 | eleq1 2259 | 
. . . . . . 7
 | |
| 7 | suceq 4437 | 
. . . . . . . 8
 | |
| 8 | 7 | eleq1d 2265 | 
. . . . . . 7
 | 
| 9 | 6, 8 | imbi12d 234 | 
. . . . . 6
 | 
| 10 | eleq2 2260 | 
. . . . . . 7
 | |
| 11 | suceq 4437 | 
. . . . . . . 8
 | |
| 12 | 11 | eleq2d 2266 | 
. . . . . . 7
 | 
| 13 | 10, 12 | imbi12d 234 | 
. . . . . 6
 | 
| 14 | 9, 13 | rspc2va 2882 | 
. . . . 5
 | 
| 15 | 4, 5, 14 | mp2an 426 | 
. . . 4
 | 
| 16 | 1, 15 | ax-mp 5 | 
. . 3
 | 
| 17 | elsuci 4438 | 
. . 3
 | |
| 18 | 16, 17 | ax-mp 5 | 
. 2
 | 
| 19 | suc0 4446 | 
. . . . . 6
 | |
| 20 | p0ex 4221 | 
. . . . . . 7
 | |
| 21 | 20 | prid2 3729 | 
. . . . . 6
 | 
| 22 | 19, 21 | eqeltri 2269 | 
. . . . 5
 | 
| 23 | eqeq1 2203 | 
. . . . . . 7
 | |
| 24 | 23 | orbi1d 792 | 
. . . . . 6
 | 
| 25 | 24 | elrab3 2921 | 
. . . . 5
 | 
| 26 | 22, 25 | ax-mp 5 | 
. . . 4
 | 
| 27 | 0ex 4160 | 
. . . . . . 7
 | |
| 28 | nsuceq0g 4453 | 
. . . . . . 7
 | |
| 29 | 27, 28 | ax-mp 5 | 
. . . . . 6
 | 
| 30 | df-ne 2368 | 
. . . . . 6
 | |
| 31 | 29, 30 | mpbi 145 | 
. . . . 5
 | 
| 32 | pm2.53 723 | 
. . . . 5
 | |
| 33 | 31, 32 | mpi 15 | 
. . . 4
 | 
| 34 | 26, 33 | sylbi 121 | 
. . 3
 | 
| 35 | 19 | eqeq1i 2204 | 
. . . . 5
 | 
| 36 | 19 | eqeq1i 2204 | 
. . . . . . . 8
 | 
| 37 | 31, 36 | mtbi 671 | 
. . . . . . 7
 | 
| 38 | 20 | elsn 3638 | 
. . . . . . 7
 | 
| 39 | 37, 38 | mtbir 672 | 
. . . . . 6
 | 
| 40 | eleq2 2260 | 
. . . . . 6
 | |
| 41 | 39, 40 | mtbii 675 | 
. . . . 5
 | 
| 42 | 35, 41 | sylbi 121 | 
. . . 4
 | 
| 43 | olc 712 | 
. . . . 5
 | |
| 44 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 45 | 44 | orbi1d 792 | 
. . . . . . 7
 | 
| 46 | 45 | elrab3 2921 | 
. . . . . 6
 | 
| 47 | 21, 46 | ax-mp 5 | 
. . . . 5
 | 
| 48 | 43, 47 | sylibr 134 | 
. . . 4
 | 
| 49 | 42, 48 | nsyl 629 | 
. . 3
 | 
| 50 | 34, 49 | orim12i 760 | 
. 2
 | 
| 51 | 18, 50 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: ordsucunielexmid 4567 | 
| Copyright terms: Public domain | W3C validator |