| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version | ||
| Description: The converse of onsucelsucr 4564 implies excluded middle. On the other
hand, if |
| Ref | Expression |
|---|---|
| onsucelsucexmid.1 |
|
| Ref | Expression |
|---|---|
| onsucelsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucelsucexmidlem1 4584 |
. . . 4
| |
| 2 | 0elon 4447 |
. . . . . 6
| |
| 3 | onsucelsucexmidlem 4585 |
. . . . . 6
| |
| 4 | 2, 3 | pm3.2i 272 |
. . . . 5
|
| 5 | onsucelsucexmid.1 |
. . . . 5
| |
| 6 | eleq1 2269 |
. . . . . . 7
| |
| 7 | suceq 4457 |
. . . . . . . 8
| |
| 8 | 7 | eleq1d 2275 |
. . . . . . 7
|
| 9 | 6, 8 | imbi12d 234 |
. . . . . 6
|
| 10 | eleq2 2270 |
. . . . . . 7
| |
| 11 | suceq 4457 |
. . . . . . . 8
| |
| 12 | 11 | eleq2d 2276 |
. . . . . . 7
|
| 13 | 10, 12 | imbi12d 234 |
. . . . . 6
|
| 14 | 9, 13 | rspc2va 2895 |
. . . . 5
|
| 15 | 4, 5, 14 | mp2an 426 |
. . . 4
|
| 16 | 1, 15 | ax-mp 5 |
. . 3
|
| 17 | elsuci 4458 |
. . 3
| |
| 18 | 16, 17 | ax-mp 5 |
. 2
|
| 19 | suc0 4466 |
. . . . . 6
| |
| 20 | p0ex 4240 |
. . . . . . 7
| |
| 21 | 20 | prid2 3745 |
. . . . . 6
|
| 22 | 19, 21 | eqeltri 2279 |
. . . . 5
|
| 23 | eqeq1 2213 |
. . . . . . 7
| |
| 24 | 23 | orbi1d 793 |
. . . . . 6
|
| 25 | 24 | elrab3 2934 |
. . . . 5
|
| 26 | 22, 25 | ax-mp 5 |
. . . 4
|
| 27 | 0ex 4179 |
. . . . . . 7
| |
| 28 | nsuceq0g 4473 |
. . . . . . 7
| |
| 29 | 27, 28 | ax-mp 5 |
. . . . . 6
|
| 30 | df-ne 2378 |
. . . . . 6
| |
| 31 | 29, 30 | mpbi 145 |
. . . . 5
|
| 32 | pm2.53 724 |
. . . . 5
| |
| 33 | 31, 32 | mpi 15 |
. . . 4
|
| 34 | 26, 33 | sylbi 121 |
. . 3
|
| 35 | 19 | eqeq1i 2214 |
. . . . 5
|
| 36 | 19 | eqeq1i 2214 |
. . . . . . . 8
|
| 37 | 31, 36 | mtbi 672 |
. . . . . . 7
|
| 38 | 20 | elsn 3654 |
. . . . . . 7
|
| 39 | 37, 38 | mtbir 673 |
. . . . . 6
|
| 40 | eleq2 2270 |
. . . . . 6
| |
| 41 | 39, 40 | mtbii 676 |
. . . . 5
|
| 42 | 35, 41 | sylbi 121 |
. . . 4
|
| 43 | olc 713 |
. . . . 5
| |
| 44 | eqeq1 2213 |
. . . . . . . 8
| |
| 45 | 44 | orbi1d 793 |
. . . . . . 7
|
| 46 | 45 | elrab3 2934 |
. . . . . 6
|
| 47 | 21, 46 | ax-mp 5 |
. . . . 5
|
| 48 | 43, 47 | sylibr 134 |
. . . 4
|
| 49 | 42, 48 | nsyl 629 |
. . 3
|
| 50 | 34, 49 | orim12i 761 |
. 2
|
| 51 | 18, 50 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 |
| This theorem is referenced by: ordsucunielexmid 4587 |
| Copyright terms: Public domain | W3C validator |