| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version | ||
| Description: The converse of onsucelsucr 4599 implies excluded middle. On the other
hand, if |
| Ref | Expression |
|---|---|
| onsucelsucexmid.1 |
|
| Ref | Expression |
|---|---|
| onsucelsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucelsucexmidlem1 4619 |
. . . 4
| |
| 2 | 0elon 4482 |
. . . . . 6
| |
| 3 | onsucelsucexmidlem 4620 |
. . . . . 6
| |
| 4 | 2, 3 | pm3.2i 272 |
. . . . 5
|
| 5 | onsucelsucexmid.1 |
. . . . 5
| |
| 6 | eleq1 2292 |
. . . . . . 7
| |
| 7 | suceq 4492 |
. . . . . . . 8
| |
| 8 | 7 | eleq1d 2298 |
. . . . . . 7
|
| 9 | 6, 8 | imbi12d 234 |
. . . . . 6
|
| 10 | eleq2 2293 |
. . . . . . 7
| |
| 11 | suceq 4492 |
. . . . . . . 8
| |
| 12 | 11 | eleq2d 2299 |
. . . . . . 7
|
| 13 | 10, 12 | imbi12d 234 |
. . . . . 6
|
| 14 | 9, 13 | rspc2va 2921 |
. . . . 5
|
| 15 | 4, 5, 14 | mp2an 426 |
. . . 4
|
| 16 | 1, 15 | ax-mp 5 |
. . 3
|
| 17 | elsuci 4493 |
. . 3
| |
| 18 | 16, 17 | ax-mp 5 |
. 2
|
| 19 | suc0 4501 |
. . . . . 6
| |
| 20 | p0ex 4271 |
. . . . . . 7
| |
| 21 | 20 | prid2 3773 |
. . . . . 6
|
| 22 | 19, 21 | eqeltri 2302 |
. . . . 5
|
| 23 | eqeq1 2236 |
. . . . . . 7
| |
| 24 | 23 | orbi1d 796 |
. . . . . 6
|
| 25 | 24 | elrab3 2960 |
. . . . 5
|
| 26 | 22, 25 | ax-mp 5 |
. . . 4
|
| 27 | 0ex 4210 |
. . . . . . 7
| |
| 28 | nsuceq0g 4508 |
. . . . . . 7
| |
| 29 | 27, 28 | ax-mp 5 |
. . . . . 6
|
| 30 | df-ne 2401 |
. . . . . 6
| |
| 31 | 29, 30 | mpbi 145 |
. . . . 5
|
| 32 | pm2.53 727 |
. . . . 5
| |
| 33 | 31, 32 | mpi 15 |
. . . 4
|
| 34 | 26, 33 | sylbi 121 |
. . 3
|
| 35 | 19 | eqeq1i 2237 |
. . . . 5
|
| 36 | 19 | eqeq1i 2237 |
. . . . . . . 8
|
| 37 | 31, 36 | mtbi 674 |
. . . . . . 7
|
| 38 | 20 | elsn 3682 |
. . . . . . 7
|
| 39 | 37, 38 | mtbir 675 |
. . . . . 6
|
| 40 | eleq2 2293 |
. . . . . 6
| |
| 41 | 39, 40 | mtbii 678 |
. . . . 5
|
| 42 | 35, 41 | sylbi 121 |
. . . 4
|
| 43 | olc 716 |
. . . . 5
| |
| 44 | eqeq1 2236 |
. . . . . . . 8
| |
| 45 | 44 | orbi1d 796 |
. . . . . . 7
|
| 46 | 45 | elrab3 2960 |
. . . . . 6
|
| 47 | 21, 46 | ax-mp 5 |
. . . . 5
|
| 48 | 43, 47 | sylibr 134 |
. . . 4
|
| 49 | 42, 48 | nsyl 631 |
. . 3
|
| 50 | 34, 49 | orim12i 764 |
. 2
|
| 51 | 18, 50 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: ordsucunielexmid 4622 |
| Copyright terms: Public domain | W3C validator |