Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version |
Description: The converse of onsucelsucr 4492 implies excluded middle. On the other hand, if is constrained to be a natural number, instead of an arbitrary ordinal, then the converse of onsucelsucr 4492 does hold, as seen at nnsucelsuc 6470. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmid.1 |
Ref | Expression |
---|---|
onsucelsucexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsucelsucexmidlem1 4512 | . . . 4 | |
2 | 0elon 4377 | . . . . . 6 | |
3 | onsucelsucexmidlem 4513 | . . . . . 6 | |
4 | 2, 3 | pm3.2i 270 | . . . . 5 |
5 | onsucelsucexmid.1 | . . . . 5 | |
6 | eleq1 2233 | . . . . . . 7 | |
7 | suceq 4387 | . . . . . . . 8 | |
8 | 7 | eleq1d 2239 | . . . . . . 7 |
9 | 6, 8 | imbi12d 233 | . . . . . 6 |
10 | eleq2 2234 | . . . . . . 7 | |
11 | suceq 4387 | . . . . . . . 8 | |
12 | 11 | eleq2d 2240 | . . . . . . 7 |
13 | 10, 12 | imbi12d 233 | . . . . . 6 |
14 | 9, 13 | rspc2va 2848 | . . . . 5 |
15 | 4, 5, 14 | mp2an 424 | . . . 4 |
16 | 1, 15 | ax-mp 5 | . . 3 |
17 | elsuci 4388 | . . 3 | |
18 | 16, 17 | ax-mp 5 | . 2 |
19 | suc0 4396 | . . . . . 6 | |
20 | p0ex 4174 | . . . . . . 7 | |
21 | 20 | prid2 3690 | . . . . . 6 |
22 | 19, 21 | eqeltri 2243 | . . . . 5 |
23 | eqeq1 2177 | . . . . . . 7 | |
24 | 23 | orbi1d 786 | . . . . . 6 |
25 | 24 | elrab3 2887 | . . . . 5 |
26 | 22, 25 | ax-mp 5 | . . . 4 |
27 | 0ex 4116 | . . . . . . 7 | |
28 | nsuceq0g 4403 | . . . . . . 7 | |
29 | 27, 28 | ax-mp 5 | . . . . . 6 |
30 | df-ne 2341 | . . . . . 6 | |
31 | 29, 30 | mpbi 144 | . . . . 5 |
32 | pm2.53 717 | . . . . 5 | |
33 | 31, 32 | mpi 15 | . . . 4 |
34 | 26, 33 | sylbi 120 | . . 3 |
35 | 19 | eqeq1i 2178 | . . . . 5 |
36 | 19 | eqeq1i 2178 | . . . . . . . 8 |
37 | 31, 36 | mtbi 665 | . . . . . . 7 |
38 | 20 | elsn 3599 | . . . . . . 7 |
39 | 37, 38 | mtbir 666 | . . . . . 6 |
40 | eleq2 2234 | . . . . . 6 | |
41 | 39, 40 | mtbii 669 | . . . . 5 |
42 | 35, 41 | sylbi 120 | . . . 4 |
43 | olc 706 | . . . . 5 | |
44 | eqeq1 2177 | . . . . . . . 8 | |
45 | 44 | orbi1d 786 | . . . . . . 7 |
46 | 45 | elrab3 2887 | . . . . . 6 |
47 | 21, 46 | ax-mp 5 | . . . . 5 |
48 | 43, 47 | sylibr 133 | . . . 4 |
49 | 42, 48 | nsyl 623 | . . 3 |
50 | 34, 49 | orim12i 754 | . 2 |
51 | 18, 50 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 wne 2340 wral 2448 crab 2452 cvv 2730 c0 3414 csn 3583 cpr 3584 con0 4348 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: ordsucunielexmid 4515 |
Copyright terms: Public domain | W3C validator |