Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version |
Description: The converse of onsucelsucr 4501 implies excluded middle. On the other hand, if is constrained to be a natural number, instead of an arbitrary ordinal, then the converse of onsucelsucr 4501 does hold, as seen at nnsucelsuc 6482. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmid.1 |
Ref | Expression |
---|---|
onsucelsucexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsucelsucexmidlem1 4521 | . . . 4 | |
2 | 0elon 4386 | . . . . . 6 | |
3 | onsucelsucexmidlem 4522 | . . . . . 6 | |
4 | 2, 3 | pm3.2i 272 | . . . . 5 |
5 | onsucelsucexmid.1 | . . . . 5 | |
6 | eleq1 2238 | . . . . . . 7 | |
7 | suceq 4396 | . . . . . . . 8 | |
8 | 7 | eleq1d 2244 | . . . . . . 7 |
9 | 6, 8 | imbi12d 234 | . . . . . 6 |
10 | eleq2 2239 | . . . . . . 7 | |
11 | suceq 4396 | . . . . . . . 8 | |
12 | 11 | eleq2d 2245 | . . . . . . 7 |
13 | 10, 12 | imbi12d 234 | . . . . . 6 |
14 | 9, 13 | rspc2va 2853 | . . . . 5 |
15 | 4, 5, 14 | mp2an 426 | . . . 4 |
16 | 1, 15 | ax-mp 5 | . . 3 |
17 | elsuci 4397 | . . 3 | |
18 | 16, 17 | ax-mp 5 | . 2 |
19 | suc0 4405 | . . . . . 6 | |
20 | p0ex 4183 | . . . . . . 7 | |
21 | 20 | prid2 3696 | . . . . . 6 |
22 | 19, 21 | eqeltri 2248 | . . . . 5 |
23 | eqeq1 2182 | . . . . . . 7 | |
24 | 23 | orbi1d 791 | . . . . . 6 |
25 | 24 | elrab3 2892 | . . . . 5 |
26 | 22, 25 | ax-mp 5 | . . . 4 |
27 | 0ex 4125 | . . . . . . 7 | |
28 | nsuceq0g 4412 | . . . . . . 7 | |
29 | 27, 28 | ax-mp 5 | . . . . . 6 |
30 | df-ne 2346 | . . . . . 6 | |
31 | 29, 30 | mpbi 145 | . . . . 5 |
32 | pm2.53 722 | . . . . 5 | |
33 | 31, 32 | mpi 15 | . . . 4 |
34 | 26, 33 | sylbi 121 | . . 3 |
35 | 19 | eqeq1i 2183 | . . . . 5 |
36 | 19 | eqeq1i 2183 | . . . . . . . 8 |
37 | 31, 36 | mtbi 670 | . . . . . . 7 |
38 | 20 | elsn 3605 | . . . . . . 7 |
39 | 37, 38 | mtbir 671 | . . . . . 6 |
40 | eleq2 2239 | . . . . . 6 | |
41 | 39, 40 | mtbii 674 | . . . . 5 |
42 | 35, 41 | sylbi 121 | . . . 4 |
43 | olc 711 | . . . . 5 | |
44 | eqeq1 2182 | . . . . . . . 8 | |
45 | 44 | orbi1d 791 | . . . . . . 7 |
46 | 45 | elrab3 2892 | . . . . . 6 |
47 | 21, 46 | ax-mp 5 | . . . . 5 |
48 | 43, 47 | sylibr 134 | . . . 4 |
49 | 42, 48 | nsyl 628 | . . 3 |
50 | 34, 49 | orim12i 759 | . 2 |
51 | 18, 50 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 wceq 1353 wcel 2146 wne 2345 wral 2453 crab 2457 cvv 2735 c0 3420 csn 3589 cpr 3590 con0 4357 csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 |
This theorem is referenced by: ordsucunielexmid 4524 |
Copyright terms: Public domain | W3C validator |