ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnn0pnf Unicode version

Theorem xnn0nnn0pnf 9190
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nnn0pnf  |-  ( ( N  e. NN0*  /\  -.  N  e.  NN0 )  ->  N  = +oo )

Proof of Theorem xnn0nnn0pnf
StepHypRef Expression
1 elxnn0 9179 . . 3  |-  ( N  e. NN0* 
<->  ( N  e.  NN0  \/  N  = +oo )
)
2 pm2.53 712 . . 3  |-  ( ( N  e.  NN0  \/  N  = +oo )  ->  ( -.  N  e. 
NN0  ->  N  = +oo ) )
31, 2sylbi 120 . 2  |-  ( N  e. NN0*  ->  ( -.  N  e.  NN0  ->  N  = +oo ) )
43imp 123 1  |-  ( ( N  e. NN0*  /\  -.  N  e.  NN0 )  ->  N  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   +oocpnf 7930   NN0cn0 9114  NN0*cxnn0 9177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-pnf 7935  df-xr 7937  df-xnn0 9178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator