Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0nnn0pnf | Unicode version |
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0nnn0pnf | NN0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9179 | . . 3 NN0* | |
2 | pm2.53 712 | . . 3 | |
3 | 1, 2 | sylbi 120 | . 2 NN0* |
4 | 3 | imp 123 | 1 NN0* |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wceq 1343 wcel 2136 cpnf 7930 cn0 9114 NN0*cxnn0 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 ax-cnex 7844 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-xr 7937 df-xnn0 9178 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |