ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnn0pnf Unicode version

Theorem xnn0nnn0pnf 9319
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nnn0pnf  |-  ( ( N  e. NN0*  /\  -.  N  e.  NN0 )  ->  N  = +oo )

Proof of Theorem xnn0nnn0pnf
StepHypRef Expression
1 elxnn0 9308 . . 3  |-  ( N  e. NN0* 
<->  ( N  e.  NN0  \/  N  = +oo )
)
2 pm2.53 723 . . 3  |-  ( ( N  e.  NN0  \/  N  = +oo )  ->  ( -.  N  e. 
NN0  ->  N  = +oo ) )
31, 2sylbi 121 . 2  |-  ( N  e. NN0*  ->  ( -.  N  e.  NN0  ->  N  = +oo ) )
43imp 124 1  |-  ( ( N  e. NN0*  /\  -.  N  e.  NN0 )  ->  N  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   +oocpnf 8053   NN0cn0 9243  NN0*cxnn0 9306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-un 4465  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-pnf 8058  df-xr 8060  df-xnn0 9307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator