ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabnc Unicode version

Theorem rabnc 3501
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  (/)
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 3453 . 2  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  {
x  e.  A  | 
( ph  /\  -.  ph ) }
2 rabeq0 3498 . . 3  |-  ( { x  e.  A  | 
( ph  /\  -.  ph ) }  =  (/)  <->  A. x  e.  A  -.  ( ph  /\  -.  ph )
)
3 pm3.24 695 . . . 4  |-  -.  ( ph  /\  -.  ph )
43a1i 9 . . 3  |-  ( x  e.  A  ->  -.  ( ph  /\  -.  ph ) )
52, 4mprgbir 2566 . 2  |-  { x  e.  A  |  ( ph  /\  -.  ph ) }  =  (/)
61, 5eqtri 2228 1  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1373    e. wcel 2178   {crab 2490    i^i cin 3173   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-v 2778  df-dif 3176  df-in 3180  df-nul 3469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator