ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabnc Unicode version

Theorem rabnc 3319
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  (/)
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 3272 . 2  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  {
x  e.  A  | 
( ph  /\  -.  ph ) }
2 rabeq0 3316 . . 3  |-  ( { x  e.  A  | 
( ph  /\  -.  ph ) }  =  (/)  <->  A. x  e.  A  -.  ( ph  /\  -.  ph )
)
3 pm3.24 663 . . . 4  |-  -.  ( ph  /\  -.  ph )
43a1i 9 . . 3  |-  ( x  e.  A  ->  -.  ( ph  /\  -.  ph ) )
52, 4mprgbir 2434 . 2  |-  { x  e.  A  |  ( ph  /\  -.  ph ) }  =  (/)
61, 5eqtri 2109 1  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1290    e. wcel 1439   {crab 2364    i^i cin 2999   (/)c0 3287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rab 2369  df-v 2622  df-dif 3002  df-in 3006  df-nul 3288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator