| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unennn | Unicode version | ||
| Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.) |
| Ref | Expression |
|---|---|
| unennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddennn 12878 |
. . . . . 6
| |
| 2 | 1 | ensymi 6897 |
. . . . 5
|
| 3 | entr 6899 |
. . . . 5
| |
| 4 | 2, 3 | mpan2 425 |
. . . 4
|
| 5 | 4 | 3ad2ant1 1021 |
. . 3
|
| 6 | evenennn 12879 |
. . . . . 6
| |
| 7 | 6 | ensymi 6897 |
. . . . 5
|
| 8 | entr 6899 |
. . . . 5
| |
| 9 | 7, 8 | mpan2 425 |
. . . 4
|
| 10 | 9 | 3ad2ant2 1022 |
. . 3
|
| 11 | simp3 1002 |
. . 3
| |
| 12 | inrab 3453 |
. . . . 5
| |
| 13 | pm3.24 695 |
. . . . . . . 8
| |
| 14 | ancom 266 |
. . . . . . . 8
| |
| 15 | 13, 14 | mtbi 672 |
. . . . . . 7
|
| 16 | 15 | rgenw 2563 |
. . . . . 6
|
| 17 | rabeq0 3498 |
. . . . . 6
| |
| 18 | 16, 17 | mpbir 146 |
. . . . 5
|
| 19 | 12, 18 | eqtri 2228 |
. . . 4
|
| 20 | 19 | a1i 9 |
. . 3
|
| 21 | unen 6932 |
. . 3
| |
| 22 | 5, 10, 11, 20, 21 | syl22anc 1251 |
. 2
|
| 23 | unrab 3452 |
. . 3
| |
| 24 | rabid2 2685 |
. . . 4
| |
| 25 | nnz 9426 |
. . . . . 6
| |
| 26 | 2z 9435 |
. . . . . . 7
| |
| 27 | zdvdsdc 12238 |
. . . . . . 7
| |
| 28 | 26, 27 | mpan 424 |
. . . . . 6
|
| 29 | exmiddc 838 |
. . . . . 6
| |
| 30 | 25, 28, 29 | 3syl 17 |
. . . . 5
|
| 31 | 30 | orcomd 731 |
. . . 4
|
| 32 | 24, 31 | mprgbir 2566 |
. . 3
|
| 33 | 23, 32 | eqtr4i 2231 |
. 2
|
| 34 | 22, 33 | breqtrdi 4100 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-er 6643 df-en 6851 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-q 9776 df-rp 9811 df-fl 10450 df-mod 10505 df-dvds 12214 |
| This theorem is referenced by: znnen 12884 |
| Copyright terms: Public domain | W3C validator |