ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unennn Unicode version

Theorem unennn 12768
Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
Assertion
Ref Expression
unennn  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  NN )

Proof of Theorem unennn
StepHypRef Expression
1 oddennn 12763 . . . . . 6  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
21ensymi 6874 . . . . 5  |-  NN  ~~  { z  e.  NN  |  -.  2  ||  z }
3 entr 6876 . . . . 5  |-  ( ( A  ~~  NN  /\  NN  ~~  { z  e.  NN  |  -.  2  ||  z } )  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
42, 3mpan2 425 . . . 4  |-  ( A 
~~  NN  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
543ad2ant1 1021 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
6 evenennn 12764 . . . . . 6  |-  { z  e.  NN  |  2 
||  z }  ~~  NN
76ensymi 6874 . . . . 5  |-  NN  ~~  { z  e.  NN  | 
2  ||  z }
8 entr 6876 . . . . 5  |-  ( ( B  ~~  NN  /\  NN  ~~  { z  e.  NN  |  2  ||  z } )  ->  B  ~~  { z  e.  NN  |  2  ||  z } )
97, 8mpan2 425 . . . 4  |-  ( B 
~~  NN  ->  B  ~~  { z  e.  NN  | 
2  ||  z }
)
1093ad2ant2 1022 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  B  ~~  { z  e.  NN  | 
2  ||  z }
)
11 simp3 1002 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
12 inrab 3445 . . . . 5  |-  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  {
z  e.  NN  | 
( -.  2  ||  z  /\  2  ||  z
) }
13 pm3.24 695 . . . . . . . 8  |-  -.  (
2  ||  z  /\  -.  2  ||  z )
14 ancom 266 . . . . . . . 8  |-  ( ( 2  ||  z  /\  -.  2  ||  z )  <-> 
( -.  2  ||  z  /\  2  ||  z
) )
1513, 14mtbi 672 . . . . . . 7  |-  -.  ( -.  2  ||  z  /\  2  ||  z )
1615rgenw 2561 . . . . . 6  |-  A. z  e.  NN  -.  ( -.  2  ||  z  /\  2  ||  z )
17 rabeq0 3490 . . . . . 6  |-  ( { z  e.  NN  | 
( -.  2  ||  z  /\  2  ||  z
) }  =  (/)  <->  A. z  e.  NN  -.  ( -.  2  ||  z  /\  2  ||  z
) )
1816, 17mpbir 146 . . . . 5  |-  { z  e.  NN  |  ( -.  2  ||  z  /\  2  ||  z ) }  =  (/)
1912, 18eqtri 2226 . . . 4  |-  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  (/)
2019a1i 9 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  (/) )
21 unen 6908 . . 3  |-  ( ( ( A  ~~  {
z  e.  NN  |  -.  2  ||  z }  /\  B  ~~  {
z  e.  NN  | 
2  ||  z }
)  /\  ( ( A  i^i  B )  =  (/)  /\  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  | 
2  ||  z }
)  =  (/) ) )  ->  ( A  u.  B )  ~~  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } ) )
225, 10, 11, 20, 21syl22anc 1251 . 2  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } ) )
23 unrab 3444 . . 3  |-  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } )  =  {
z  e.  NN  | 
( -.  2  ||  z  \/  2  ||  z ) }
24 rabid2 2683 . . . 4  |-  ( NN  =  { z  e.  NN  |  ( -.  2  ||  z  \/  2  ||  z ) }  <->  A. z  e.  NN  ( -.  2  ||  z  \/  2  ||  z ) )
25 nnz 9391 . . . . . 6  |-  ( z  e.  NN  ->  z  e.  ZZ )
26 2z 9400 . . . . . . 7  |-  2  e.  ZZ
27 zdvdsdc 12123 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  z  e.  ZZ )  -> DECID  2 
||  z )
2826, 27mpan 424 . . . . . 6  |-  ( z  e.  ZZ  -> DECID  2  ||  z )
29 exmiddc 838 . . . . . 6  |-  (DECID  2  ||  z  ->  ( 2  ||  z  \/  -.  2  ||  z ) )
3025, 28, 293syl 17 . . . . 5  |-  ( z  e.  NN  ->  (
2  ||  z  \/  -.  2  ||  z ) )
3130orcomd 731 . . . 4  |-  ( z  e.  NN  ->  ( -.  2  ||  z  \/  2  ||  z ) )
3224, 31mprgbir 2564 . . 3  |-  NN  =  { z  e.  NN  |  ( -.  2  ||  z  \/  2  ||  z ) }
3323, 32eqtr4i 2229 . 2  |-  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } )  =  NN
3422, 33breqtrdi 4085 1  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488    u. cun 3164    i^i cin 3165   (/)c0 3460   class class class wbr 4044    ~~ cen 6825   NNcn 9036   2c2 9087   ZZcz 9372    || cdvds 12098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-er 6620  df-en 6828  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468  df-dvds 12099
This theorem is referenced by:  znnen  12769
  Copyright terms: Public domain W3C validator