ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unennn Unicode version

Theorem unennn 12352
Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
Assertion
Ref Expression
unennn  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  NN )

Proof of Theorem unennn
StepHypRef Expression
1 oddennn 12347 . . . . . 6  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
21ensymi 6760 . . . . 5  |-  NN  ~~  { z  e.  NN  |  -.  2  ||  z }
3 entr 6762 . . . . 5  |-  ( ( A  ~~  NN  /\  NN  ~~  { z  e.  NN  |  -.  2  ||  z } )  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
42, 3mpan2 423 . . . 4  |-  ( A 
~~  NN  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
543ad2ant1 1013 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
6 evenennn 12348 . . . . . 6  |-  { z  e.  NN  |  2 
||  z }  ~~  NN
76ensymi 6760 . . . . 5  |-  NN  ~~  { z  e.  NN  | 
2  ||  z }
8 entr 6762 . . . . 5  |-  ( ( B  ~~  NN  /\  NN  ~~  { z  e.  NN  |  2  ||  z } )  ->  B  ~~  { z  e.  NN  |  2  ||  z } )
97, 8mpan2 423 . . . 4  |-  ( B 
~~  NN  ->  B  ~~  { z  e.  NN  | 
2  ||  z }
)
1093ad2ant2 1014 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  B  ~~  { z  e.  NN  | 
2  ||  z }
)
11 simp3 994 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
12 inrab 3399 . . . . 5  |-  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  {
z  e.  NN  | 
( -.  2  ||  z  /\  2  ||  z
) }
13 pm3.24 688 . . . . . . . 8  |-  -.  (
2  ||  z  /\  -.  2  ||  z )
14 ancom 264 . . . . . . . 8  |-  ( ( 2  ||  z  /\  -.  2  ||  z )  <-> 
( -.  2  ||  z  /\  2  ||  z
) )
1513, 14mtbi 665 . . . . . . 7  |-  -.  ( -.  2  ||  z  /\  2  ||  z )
1615rgenw 2525 . . . . . 6  |-  A. z  e.  NN  -.  ( -.  2  ||  z  /\  2  ||  z )
17 rabeq0 3444 . . . . . 6  |-  ( { z  e.  NN  | 
( -.  2  ||  z  /\  2  ||  z
) }  =  (/)  <->  A. z  e.  NN  -.  ( -.  2  ||  z  /\  2  ||  z
) )
1816, 17mpbir 145 . . . . 5  |-  { z  e.  NN  |  ( -.  2  ||  z  /\  2  ||  z ) }  =  (/)
1912, 18eqtri 2191 . . . 4  |-  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  (/)
2019a1i 9 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  (/) )
21 unen 6794 . . 3  |-  ( ( ( A  ~~  {
z  e.  NN  |  -.  2  ||  z }  /\  B  ~~  {
z  e.  NN  | 
2  ||  z }
)  /\  ( ( A  i^i  B )  =  (/)  /\  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  | 
2  ||  z }
)  =  (/) ) )  ->  ( A  u.  B )  ~~  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } ) )
225, 10, 11, 20, 21syl22anc 1234 . 2  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } ) )
23 unrab 3398 . . 3  |-  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } )  =  {
z  e.  NN  | 
( -.  2  ||  z  \/  2  ||  z ) }
24 rabid2 2646 . . . 4  |-  ( NN  =  { z  e.  NN  |  ( -.  2  ||  z  \/  2  ||  z ) }  <->  A. z  e.  NN  ( -.  2  ||  z  \/  2  ||  z ) )
25 nnz 9231 . . . . . 6  |-  ( z  e.  NN  ->  z  e.  ZZ )
26 2z 9240 . . . . . . 7  |-  2  e.  ZZ
27 zdvdsdc 11774 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  z  e.  ZZ )  -> DECID  2 
||  z )
2826, 27mpan 422 . . . . . 6  |-  ( z  e.  ZZ  -> DECID  2  ||  z )
29 exmiddc 831 . . . . . 6  |-  (DECID  2  ||  z  ->  ( 2  ||  z  \/  -.  2  ||  z ) )
3025, 28, 293syl 17 . . . . 5  |-  ( z  e.  NN  ->  (
2  ||  z  \/  -.  2  ||  z ) )
3130orcomd 724 . . . 4  |-  ( z  e.  NN  ->  ( -.  2  ||  z  \/  2  ||  z ) )
3224, 31mprgbir 2528 . . 3  |-  NN  =  { z  e.  NN  |  ( -.  2  ||  z  \/  2  ||  z ) }
3323, 32eqtr4i 2194 . 2  |-  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } )  =  NN
3422, 33breqtrdi 4030 1  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452    u. cun 3119    i^i cin 3120   (/)c0 3414   class class class wbr 3989    ~~ cen 6716   NNcn 8878   2c2 8929   ZZcz 9212    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-er 6513  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226  df-mod 10279  df-dvds 11750
This theorem is referenced by:  znnen  12353
  Copyright terms: Public domain W3C validator