ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unennn Unicode version

Theorem unennn 12330
Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
Assertion
Ref Expression
unennn  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  NN )

Proof of Theorem unennn
StepHypRef Expression
1 oddennn 12325 . . . . . 6  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
21ensymi 6748 . . . . 5  |-  NN  ~~  { z  e.  NN  |  -.  2  ||  z }
3 entr 6750 . . . . 5  |-  ( ( A  ~~  NN  /\  NN  ~~  { z  e.  NN  |  -.  2  ||  z } )  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
42, 3mpan2 422 . . . 4  |-  ( A 
~~  NN  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
543ad2ant1 1008 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  A  ~~  { z  e.  NN  |  -.  2  ||  z } )
6 evenennn 12326 . . . . . 6  |-  { z  e.  NN  |  2 
||  z }  ~~  NN
76ensymi 6748 . . . . 5  |-  NN  ~~  { z  e.  NN  | 
2  ||  z }
8 entr 6750 . . . . 5  |-  ( ( B  ~~  NN  /\  NN  ~~  { z  e.  NN  |  2  ||  z } )  ->  B  ~~  { z  e.  NN  |  2  ||  z } )
97, 8mpan2 422 . . . 4  |-  ( B 
~~  NN  ->  B  ~~  { z  e.  NN  | 
2  ||  z }
)
1093ad2ant2 1009 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  B  ~~  { z  e.  NN  | 
2  ||  z }
)
11 simp3 989 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
12 inrab 3394 . . . . 5  |-  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  {
z  e.  NN  | 
( -.  2  ||  z  /\  2  ||  z
) }
13 pm3.24 683 . . . . . . . 8  |-  -.  (
2  ||  z  /\  -.  2  ||  z )
14 ancom 264 . . . . . . . 8  |-  ( ( 2  ||  z  /\  -.  2  ||  z )  <-> 
( -.  2  ||  z  /\  2  ||  z
) )
1513, 14mtbi 660 . . . . . . 7  |-  -.  ( -.  2  ||  z  /\  2  ||  z )
1615rgenw 2521 . . . . . 6  |-  A. z  e.  NN  -.  ( -.  2  ||  z  /\  2  ||  z )
17 rabeq0 3438 . . . . . 6  |-  ( { z  e.  NN  | 
( -.  2  ||  z  /\  2  ||  z
) }  =  (/)  <->  A. z  e.  NN  -.  ( -.  2  ||  z  /\  2  ||  z
) )
1816, 17mpbir 145 . . . . 5  |-  { z  e.  NN  |  ( -.  2  ||  z  /\  2  ||  z ) }  =  (/)
1912, 18eqtri 2186 . . . 4  |-  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  (/)
2019a1i 9 . . 3  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  |  2  ||  z } )  =  (/) )
21 unen 6782 . . 3  |-  ( ( ( A  ~~  {
z  e.  NN  |  -.  2  ||  z }  /\  B  ~~  {
z  e.  NN  | 
2  ||  z }
)  /\  ( ( A  i^i  B )  =  (/)  /\  ( { z  e.  NN  |  -.  2  ||  z }  i^i  { z  e.  NN  | 
2  ||  z }
)  =  (/) ) )  ->  ( A  u.  B )  ~~  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } ) )
225, 10, 11, 20, 21syl22anc 1229 . 2  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } ) )
23 unrab 3393 . . 3  |-  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } )  =  {
z  e.  NN  | 
( -.  2  ||  z  \/  2  ||  z ) }
24 rabid2 2642 . . . 4  |-  ( NN  =  { z  e.  NN  |  ( -.  2  ||  z  \/  2  ||  z ) }  <->  A. z  e.  NN  ( -.  2  ||  z  \/  2  ||  z ) )
25 nnz 9210 . . . . . 6  |-  ( z  e.  NN  ->  z  e.  ZZ )
26 2z 9219 . . . . . . 7  |-  2  e.  ZZ
27 zdvdsdc 11752 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  z  e.  ZZ )  -> DECID  2 
||  z )
2826, 27mpan 421 . . . . . 6  |-  ( z  e.  ZZ  -> DECID  2  ||  z )
29 exmiddc 826 . . . . . 6  |-  (DECID  2  ||  z  ->  ( 2  ||  z  \/  -.  2  ||  z ) )
3025, 28, 293syl 17 . . . . 5  |-  ( z  e.  NN  ->  (
2  ||  z  \/  -.  2  ||  z ) )
3130orcomd 719 . . . 4  |-  ( z  e.  NN  ->  ( -.  2  ||  z  \/  2  ||  z ) )
3224, 31mprgbir 2524 . . 3  |-  NN  =  { z  e.  NN  |  ( -.  2  ||  z  \/  2  ||  z ) }
3323, 32eqtr4i 2189 . 2  |-  ( { z  e.  NN  |  -.  2  ||  z }  u.  { z  e.  NN  |  2  ||  z } )  =  NN
3422, 33breqtrdi 4023 1  |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   {crab 2448    u. cun 3114    i^i cin 3115   (/)c0 3409   class class class wbr 3982    ~~ cen 6704   NNcn 8857   2c2 8908   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-er 6501  df-en 6707  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258  df-dvds 11728
This theorem is referenced by:  znnen  12331
  Copyright terms: Public domain W3C validator