ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul2 Unicode version

Theorem dfnul2 3426
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2  |-  (/)  =  {
x  |  -.  x  =  x }

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3425 . . . 4  |-  (/)  =  ( _V  \  _V )
21eleq2i 2244 . . 3  |-  ( x  e.  (/)  <->  x  e.  ( _V  \  _V ) )
3 eldif 3140 . . 3  |-  ( x  e.  ( _V  \  _V )  <->  ( x  e. 
_V  /\  -.  x  e.  _V ) )
4 pm3.24 693 . . . 4  |-  -.  (
x  e.  _V  /\  -.  x  e.  _V )
5 eqid 2177 . . . . 5  |-  x  =  x
65notnoti 645 . . . 4  |-  -.  -.  x  =  x
74, 62false 701 . . 3  |-  ( ( x  e.  _V  /\  -.  x  e.  _V ) 
<->  -.  x  =  x )
82, 3, 73bitri 206 . 2  |-  ( x  e.  (/)  <->  -.  x  =  x )
98abbi2i 2292 1  |-  (/)  =  {
x  |  -.  x  =  x }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   _Vcvv 2739    \ cdif 3128   (/)c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-nul 3425
This theorem is referenced by:  dfnul3  3427  rab0  3453  iotanul  5195
  Copyright terms: Public domain W3C validator