ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul2 Unicode version

Theorem dfnul2 3470
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2  |-  (/)  =  {
x  |  -.  x  =  x }

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3469 . . . 4  |-  (/)  =  ( _V  \  _V )
21eleq2i 2274 . . 3  |-  ( x  e.  (/)  <->  x  e.  ( _V  \  _V ) )
3 eldif 3183 . . 3  |-  ( x  e.  ( _V  \  _V )  <->  ( x  e. 
_V  /\  -.  x  e.  _V ) )
4 pm3.24 695 . . . 4  |-  -.  (
x  e.  _V  /\  -.  x  e.  _V )
5 eqid 2207 . . . . 5  |-  x  =  x
65notnoti 646 . . . 4  |-  -.  -.  x  =  x
74, 62false 703 . . 3  |-  ( ( x  e.  _V  /\  -.  x  e.  _V ) 
<->  -.  x  =  x )
82, 3, 73bitri 206 . 2  |-  ( x  e.  (/)  <->  -.  x  =  x )
98abbi2i 2322 1  |-  (/)  =  {
x  |  -.  x  =  x }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776    \ cdif 3171   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by:  dfnul3  3471  rab0  3497  iotanul  5266
  Copyright terms: Public domain W3C validator