ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul2 Unicode version

Theorem dfnul2 3411
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2  |-  (/)  =  {
x  |  -.  x  =  x }

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3410 . . . 4  |-  (/)  =  ( _V  \  _V )
21eleq2i 2233 . . 3  |-  ( x  e.  (/)  <->  x  e.  ( _V  \  _V ) )
3 eldif 3125 . . 3  |-  ( x  e.  ( _V  \  _V )  <->  ( x  e. 
_V  /\  -.  x  e.  _V ) )
4 pm3.24 683 . . . 4  |-  -.  (
x  e.  _V  /\  -.  x  e.  _V )
5 eqid 2165 . . . . 5  |-  x  =  x
65notnoti 635 . . . 4  |-  -.  -.  x  =  x
74, 62false 691 . . 3  |-  ( ( x  e.  _V  /\  -.  x  e.  _V ) 
<->  -.  x  =  x )
82, 3, 73bitri 205 . 2  |-  ( x  e.  (/)  <->  -.  x  =  x )
98abbi2i 2281 1  |-  (/)  =  {
x  |  -.  x  =  x }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726    \ cdif 3113   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by:  dfnul3  3412  rab0  3437  iotanul  5168
  Copyright terms: Public domain W3C validator