ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul3 Unicode version

Theorem dfnul3 3417
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfnul3  |-  (/)  =  {
x  e.  A  |  -.  x  e.  A }

Proof of Theorem dfnul3
StepHypRef Expression
1 equid 1694 . . . . 5  |-  x  =  x
21notnoti 640 . . . 4  |-  -.  -.  x  =  x
3 pm3.24 688 . . . 4  |-  -.  (
x  e.  A  /\  -.  x  e.  A
)
42, 32false 696 . . 3  |-  ( -.  x  =  x  <->  ( x  e.  A  /\  -.  x  e.  A ) )
54abbii 2286 . 2  |-  { x  |  -.  x  =  x }  =  { x  |  ( x  e.  A  /\  -.  x  e.  A ) }
6 dfnul2 3416 . 2  |-  (/)  =  {
x  |  -.  x  =  x }
7 df-rab 2457 . 2  |-  { x  e.  A  |  -.  x  e.  A }  =  { x  |  ( x  e.  A  /\  -.  x  e.  A
) }
85, 6, 73eqtr4i 2201 1  |-  (/)  =  {
x  e.  A  |  -.  x  e.  A }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   {crab 2452   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by:  difidALT  3483
  Copyright terms: Public domain W3C validator