ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexim Unicode version

Theorem rexim 2526
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
rexim  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E. x  e.  A  ph  ->  E. x  e.  A  ps )
)

Proof of Theorem rexim
StepHypRef Expression
1 df-ral 2421 . . . 4  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
2 simpl 108 . . . . . . 7  |-  ( ( x  e.  A  /\  ph )  ->  x  e.  A )
32a1i 9 . . . . . 6  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  x  e.  A ) )
4 pm3.31 260 . . . . . 6  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  ps )
)
53, 4jcad 305 . . . . 5  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
65alimi 1431 . . . 4  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  ->  A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
71, 6sylbi 120 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  ->  A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
8 exim 1578 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  ->  ( E. x ( x  e.  A  /\  ph )  ->  E. x ( x  e.  A  /\  ps ) ) )
97, 8syl 14 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E. x ( x  e.  A  /\  ph )  ->  E. x
( x  e.  A  /\  ps ) ) )
10 df-rex 2422 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
11 df-rex 2422 . 2  |-  ( E. x  e.  A  ps  <->  E. x ( x  e.  A  /\  ps )
)
129, 10, 113imtr4g 204 1  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E. x  e.  A  ph  ->  E. x  e.  A  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1329   E.wex 1468    e. wcel 1480   A.wral 2416   E.wrex 2417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-ral 2421  df-rex 2422
This theorem is referenced by:  reximia  2527  reximdai  2530  r19.29  2569  reupick2  3362  ss2iun  3828  chfnrn  5531
  Copyright terms: Public domain W3C validator