Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexim | Unicode version |
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2449 | . . . 4 | |
2 | simpl 108 | . . . . . . 7 | |
3 | 2 | a1i 9 | . . . . . 6 |
4 | pm3.31 260 | . . . . . 6 | |
5 | 3, 4 | jcad 305 | . . . . 5 |
6 | 5 | alimi 1443 | . . . 4 |
7 | 1, 6 | sylbi 120 | . . 3 |
8 | exim 1587 | . . 3 | |
9 | 7, 8 | syl 14 | . 2 |
10 | df-rex 2450 | . 2 | |
11 | df-rex 2450 | . 2 | |
12 | 9, 10, 11 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wex 1480 wcel 2136 wral 2444 wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-ral 2449 df-rex 2450 |
This theorem is referenced by: reximia 2561 reximdai 2564 r19.29 2603 reupick2 3408 ss2iun 3881 chfnrn 5596 |
Copyright terms: Public domain | W3C validator |