| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexim | Unicode version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) | 
| Ref | Expression | 
|---|---|
| rexim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ral 2480 | 
. . . 4
 | |
| 2 | simpl 109 | 
. . . . . . 7
 | |
| 3 | 2 | a1i 9 | 
. . . . . 6
 | 
| 4 | pm3.31 262 | 
. . . . . 6
 | |
| 5 | 3, 4 | jcad 307 | 
. . . . 5
 | 
| 6 | 5 | alimi 1469 | 
. . . 4
 | 
| 7 | 1, 6 | sylbi 121 | 
. . 3
 | 
| 8 | exim 1613 | 
. . 3
 | |
| 9 | 7, 8 | syl 14 | 
. 2
 | 
| 10 | df-rex 2481 | 
. 2
 | |
| 11 | df-rex 2481 | 
. 2
 | |
| 12 | 9, 10, 11 | 3imtr4g 205 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: reximia 2592 reximdai 2595 r19.29 2634 reupick2 3449 ss2iun 3931 chfnrn 5673 | 
| Copyright terms: Public domain | W3C validator |