Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indind | Unicode version |
Description: If is inductive and is "inductive in ", then is inductive. (Contributed by BJ, 25-Oct-2020.) |
Ref | Expression |
---|---|
bj-indind | Ind Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-ind 13809 | . . . 4 Ind | |
2 | id 19 | . . . . 5 | |
3 | 2 | an4s 578 | . . . 4 |
4 | 1, 3 | sylanb 282 | . . 3 Ind |
5 | elin 3305 | . . . . 5 | |
6 | 5 | biimpri 132 | . . . 4 |
7 | r19.26 2592 | . . . . . . . 8 | |
8 | 7 | biimpri 132 | . . . . . . 7 |
9 | simpl 108 | . . . . . . . . 9 | |
10 | simpr 109 | . . . . . . . . 9 | |
11 | elin 3305 | . . . . . . . . . 10 | |
12 | 11 | biimpri 132 | . . . . . . . . 9 |
13 | 9, 10, 12 | syl6an 1422 | . . . . . . . 8 |
14 | 13 | ralimi 2529 | . . . . . . 7 |
15 | 8, 14 | syl 14 | . . . . . 6 |
16 | df-ral 2449 | . . . . . . 7 | |
17 | elin 3305 | . . . . . . . . 9 | |
18 | pm3.31 260 | . . . . . . . . 9 | |
19 | 17, 18 | syl5bi 151 | . . . . . . . 8 |
20 | 19 | alimi 1443 | . . . . . . 7 |
21 | 16, 20 | sylbi 120 | . . . . . 6 |
22 | 15, 21 | syl 14 | . . . . 5 |
23 | df-ral 2449 | . . . . 5 | |
24 | 22, 23 | sylibr 133 | . . . 4 |
25 | 6, 24 | anim12i 336 | . . 3 |
26 | 4, 25 | syl 14 | . 2 Ind |
27 | df-bj-ind 13809 | . 2 Ind | |
28 | 26, 27 | sylibr 133 | 1 Ind Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wcel 2136 wral 2444 cin 3115 c0 3409 csuc 4343 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-bj-ind 13809 |
This theorem is referenced by: peano5set 13822 |
Copyright terms: Public domain | W3C validator |