Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano5 | Unicode version |
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 4587. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
peano5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfom3 4576 | . . 3 | |
2 | peano1 4578 | . . . . . . . 8 | |
3 | elin 3310 | . . . . . . . 8 | |
4 | 2, 3 | mpbiran 935 | . . . . . . 7 |
5 | 4 | biimpri 132 | . . . . . 6 |
6 | peano2 4579 | . . . . . . . . . . . 12 | |
7 | 6 | adantr 274 | . . . . . . . . . . 11 |
8 | 7 | a1i 9 | . . . . . . . . . 10 |
9 | pm3.31 260 | . . . . . . . . . 10 | |
10 | 8, 9 | jcad 305 | . . . . . . . . 9 |
11 | 10 | alimi 1448 | . . . . . . . 8 |
12 | df-ral 2453 | . . . . . . . 8 | |
13 | elin 3310 | . . . . . . . . . 10 | |
14 | elin 3310 | . . . . . . . . . 10 | |
15 | 13, 14 | imbi12i 238 | . . . . . . . . 9 |
16 | 15 | albii 1463 | . . . . . . . 8 |
17 | 11, 12, 16 | 3imtr4i 200 | . . . . . . 7 |
18 | df-ral 2453 | . . . . . . 7 | |
19 | 17, 18 | sylibr 133 | . . . . . 6 |
20 | 5, 19 | anim12i 336 | . . . . 5 |
21 | omex 4577 | . . . . . . 7 | |
22 | 21 | inex1 4123 | . . . . . 6 |
23 | eleq2 2234 | . . . . . . 7 | |
24 | eleq2 2234 | . . . . . . . 8 | |
25 | 24 | raleqbi1dv 2673 | . . . . . . 7 |
26 | 23, 25 | anbi12d 470 | . . . . . 6 |
27 | 22, 26 | elab 2874 | . . . . 5 |
28 | 20, 27 | sylibr 133 | . . . 4 |
29 | intss1 3846 | . . . 4 | |
30 | 28, 29 | syl 14 | . . 3 |
31 | 1, 30 | eqsstrid 3193 | . 2 |
32 | ssid 3167 | . . . 4 | |
33 | 32 | biantrur 301 | . . 3 |
34 | ssin 3349 | . . 3 | |
35 | 33, 34 | bitri 183 | . 2 |
36 | 31, 35 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wcel 2141 cab 2156 wral 2448 cin 3120 wss 3121 c0 3414 cint 3831 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 |
This theorem is referenced by: find 4583 finds 4584 finds2 4585 indpi 7304 |
Copyright terms: Public domain | W3C validator |