| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > peano5 | Unicode version | ||
| Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 4639. (Contributed by NM, 18-Feb-2004.) | 
| Ref | Expression | 
|---|---|
| peano5 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfom3 4628 | 
. . 3
 | |
| 2 | peano1 4630 | 
. . . . . . . 8
 | |
| 3 | elin 3346 | 
. . . . . . . 8
 | |
| 4 | 2, 3 | mpbiran 942 | 
. . . . . . 7
 | 
| 5 | 4 | biimpri 133 | 
. . . . . 6
 | 
| 6 | peano2 4631 | 
. . . . . . . . . . . 12
 | |
| 7 | 6 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 8 | 7 | a1i 9 | 
. . . . . . . . . 10
 | 
| 9 | pm3.31 262 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | jcad 307 | 
. . . . . . . . 9
 | 
| 11 | 10 | alimi 1469 | 
. . . . . . . 8
 | 
| 12 | df-ral 2480 | 
. . . . . . . 8
 | |
| 13 | elin 3346 | 
. . . . . . . . . 10
 | |
| 14 | elin 3346 | 
. . . . . . . . . 10
 | |
| 15 | 13, 14 | imbi12i 239 | 
. . . . . . . . 9
 | 
| 16 | 15 | albii 1484 | 
. . . . . . . 8
 | 
| 17 | 11, 12, 16 | 3imtr4i 201 | 
. . . . . . 7
 | 
| 18 | df-ral 2480 | 
. . . . . . 7
 | |
| 19 | 17, 18 | sylibr 134 | 
. . . . . 6
 | 
| 20 | 5, 19 | anim12i 338 | 
. . . . 5
 | 
| 21 | omex 4629 | 
. . . . . . 7
 | |
| 22 | 21 | inex1 4167 | 
. . . . . 6
 | 
| 23 | eleq2 2260 | 
. . . . . . 7
 | |
| 24 | eleq2 2260 | 
. . . . . . . 8
 | |
| 25 | 24 | raleqbi1dv 2705 | 
. . . . . . 7
 | 
| 26 | 23, 25 | anbi12d 473 | 
. . . . . 6
 | 
| 27 | 22, 26 | elab 2908 | 
. . . . 5
 | 
| 28 | 20, 27 | sylibr 134 | 
. . . 4
 | 
| 29 | intss1 3889 | 
. . . 4
 | |
| 30 | 28, 29 | syl 14 | 
. . 3
 | 
| 31 | 1, 30 | eqsstrid 3229 | 
. 2
 | 
| 32 | ssid 3203 | 
. . . 4
 | |
| 33 | 32 | biantrur 303 | 
. . 3
 | 
| 34 | ssin 3385 | 
. . 3
 | |
| 35 | 33, 34 | bitri 184 | 
. 2
 | 
| 36 | 31, 35 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: find 4635 finds 4636 finds2 4637 indpi 7409 | 
| Copyright terms: Public domain | W3C validator |