| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano5 | Unicode version | ||
| Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 4695. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| peano5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfom3 4684 |
. . 3
| |
| 2 | peano1 4686 |
. . . . . . . 8
| |
| 3 | elin 3387 |
. . . . . . . 8
| |
| 4 | 2, 3 | mpbiran 946 |
. . . . . . 7
|
| 5 | 4 | biimpri 133 |
. . . . . 6
|
| 6 | peano2 4687 |
. . . . . . . . . . . 12
| |
| 7 | 6 | adantr 276 |
. . . . . . . . . . 11
|
| 8 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 9 | pm3.31 262 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | jcad 307 |
. . . . . . . . 9
|
| 11 | 10 | alimi 1501 |
. . . . . . . 8
|
| 12 | df-ral 2513 |
. . . . . . . 8
| |
| 13 | elin 3387 |
. . . . . . . . . 10
| |
| 14 | elin 3387 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | imbi12i 239 |
. . . . . . . . 9
|
| 16 | 15 | albii 1516 |
. . . . . . . 8
|
| 17 | 11, 12, 16 | 3imtr4i 201 |
. . . . . . 7
|
| 18 | df-ral 2513 |
. . . . . . 7
| |
| 19 | 17, 18 | sylibr 134 |
. . . . . 6
|
| 20 | 5, 19 | anim12i 338 |
. . . . 5
|
| 21 | omex 4685 |
. . . . . . 7
| |
| 22 | 21 | inex1 4218 |
. . . . . 6
|
| 23 | eleq2 2293 |
. . . . . . 7
| |
| 24 | eleq2 2293 |
. . . . . . . 8
| |
| 25 | 24 | raleqbi1dv 2740 |
. . . . . . 7
|
| 26 | 23, 25 | anbi12d 473 |
. . . . . 6
|
| 27 | 22, 26 | elab 2947 |
. . . . 5
|
| 28 | 20, 27 | sylibr 134 |
. . . 4
|
| 29 | intss1 3938 |
. . . 4
| |
| 30 | 28, 29 | syl 14 |
. . 3
|
| 31 | 1, 30 | eqsstrid 3270 |
. 2
|
| 32 | ssid 3244 |
. . . 4
| |
| 33 | 32 | biantrur 303 |
. . 3
|
| 34 | ssin 3426 |
. . 3
| |
| 35 | 33, 34 | bitri 184 |
. 2
|
| 36 | 31, 35 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: find 4691 finds 4692 finds2 4693 indpi 7529 |
| Copyright terms: Public domain | W3C validator |