Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano5 | Unicode version |
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 4580. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
peano5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfom3 4569 | . . 3 | |
2 | peano1 4571 | . . . . . . . 8 | |
3 | elin 3305 | . . . . . . . 8 | |
4 | 2, 3 | mpbiran 930 | . . . . . . 7 |
5 | 4 | biimpri 132 | . . . . . 6 |
6 | peano2 4572 | . . . . . . . . . . . 12 | |
7 | 6 | adantr 274 | . . . . . . . . . . 11 |
8 | 7 | a1i 9 | . . . . . . . . . 10 |
9 | pm3.31 260 | . . . . . . . . . 10 | |
10 | 8, 9 | jcad 305 | . . . . . . . . 9 |
11 | 10 | alimi 1443 | . . . . . . . 8 |
12 | df-ral 2449 | . . . . . . . 8 | |
13 | elin 3305 | . . . . . . . . . 10 | |
14 | elin 3305 | . . . . . . . . . 10 | |
15 | 13, 14 | imbi12i 238 | . . . . . . . . 9 |
16 | 15 | albii 1458 | . . . . . . . 8 |
17 | 11, 12, 16 | 3imtr4i 200 | . . . . . . 7 |
18 | df-ral 2449 | . . . . . . 7 | |
19 | 17, 18 | sylibr 133 | . . . . . 6 |
20 | 5, 19 | anim12i 336 | . . . . 5 |
21 | omex 4570 | . . . . . . 7 | |
22 | 21 | inex1 4116 | . . . . . 6 |
23 | eleq2 2230 | . . . . . . 7 | |
24 | eleq2 2230 | . . . . . . . 8 | |
25 | 24 | raleqbi1dv 2669 | . . . . . . 7 |
26 | 23, 25 | anbi12d 465 | . . . . . 6 |
27 | 22, 26 | elab 2870 | . . . . 5 |
28 | 20, 27 | sylibr 133 | . . . 4 |
29 | intss1 3839 | . . . 4 | |
30 | 28, 29 | syl 14 | . . 3 |
31 | 1, 30 | eqsstrid 3188 | . 2 |
32 | ssid 3162 | . . . 4 | |
33 | 32 | biantrur 301 | . . 3 |
34 | ssin 3344 | . . 3 | |
35 | 33, 34 | bitri 183 | . 2 |
36 | 31, 35 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 cin 3115 wss 3116 c0 3409 cint 3824 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: find 4576 finds 4577 finds2 4578 indpi 7283 |
Copyright terms: Public domain | W3C validator |