ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12i Unicode version

Theorem preq12i 3665
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1i.1  |-  A  =  B
preq12i.2  |-  C  =  D
Assertion
Ref Expression
preq12i  |-  { A ,  C }  =  { B ,  D }

Proof of Theorem preq12i
StepHypRef Expression
1 preq1i.1 . 2  |-  A  =  B
2 preq12i.2 . 2  |-  C  =  D
3 preq12 3662 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  { A ,  C }  =  { B ,  D } )
41, 2, 3mp2an 424 1  |-  { A ,  C }  =  { B ,  D }
Colors of variables: wff set class
Syntax hints:    = wceq 1348   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590
This theorem is referenced by:  lgsdir2lem5  13727
  Copyright terms: Public domain W3C validator