Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12i Unicode version

Theorem preq12i 3605
 Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1i.1
preq12i.2
Assertion
Ref Expression
preq12i

Proof of Theorem preq12i
StepHypRef Expression
1 preq1i.1 . 2
2 preq12i.2 . 2
3 preq12 3602 . 2
41, 2, 3mp2an 422 1
 Colors of variables: wff set class Syntax hints:   wceq 1331  cpr 3528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator