ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem5 Unicode version

Theorem lgsdir2lem5 15189
Description: Lemma for lgsdir2 15190. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )

Proof of Theorem lgsdir2lem5
StepHypRef Expression
1 8nn 9152 . . . . . . . . 9  |-  8  e.  NN
2 zmodcl 10418 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  8  e.  NN )  ->  ( A  mod  8
)  e.  NN0 )
31, 2mpan2 425 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
43adantr 276 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  mod  8
)  e.  NN0 )
5 elprg 3639 . . . . . . 7  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 3 ,  5 }  <->  ( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 ) ) )
64, 5syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  8 )  e.  {
3 ,  5 }  <-> 
( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 ) ) )
7 zmodcl 10418 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  8  e.  NN )  ->  ( B  mod  8
)  e.  NN0 )
81, 7mpan2 425 . . . . . . . 8  |-  ( B  e.  ZZ  ->  ( B  mod  8 )  e. 
NN0 )
98adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  mod  8
)  e.  NN0 )
10 elprg 3639 . . . . . . 7  |-  ( ( B  mod  8 )  e.  NN0  ->  ( ( B  mod  8 )  e.  { 3 ,  5 }  <->  ( ( B  mod  8 )  =  3  \/  ( B  mod  8 )  =  5 ) ) )
119, 10syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( B  mod  8 )  e.  {
3 ,  5 }  <-> 
( ( B  mod  8 )  =  3  \/  ( B  mod  8 )  =  5 ) ) )
126, 11anbi12d 473 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } )  <->  ( (
( A  mod  8
)  =  3  \/  ( A  mod  8
)  =  5 )  /\  ( ( B  mod  8 )  =  3  \/  ( B  mod  8 )  =  5 ) ) ) )
13 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  ->  A  e.  ZZ )
14 3z 9349 . . . . . . . . . 10  |-  3  e.  ZZ
1514a1i 9 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
3  e.  ZZ )
16 simplr 528 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  ->  B  e.  ZZ )
17 nnq 9701 . . . . . . . . . . 11  |-  ( 8  e.  NN  ->  8  e.  QQ )
181, 17ax-mp 5 . . . . . . . . . 10  |-  8  e.  QQ
1918a1i 9 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
8  e.  QQ )
20 8pos 9087 . . . . . . . . . 10  |-  0  <  8
2120a1i 9 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
0  <  8 )
22 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  3 )
23 lgsdir2lem1 15185 . . . . . . . . . . . 12  |-  ( ( ( 1  mod  8
)  =  1  /\  ( -u 1  mod  8 )  =  7 )  /\  ( ( 3  mod  8 )  =  3  /\  ( -u 3  mod  8 )  =  5 ) )
2423simpri 113 . . . . . . . . . . 11  |-  ( ( 3  mod  8 )  =  3  /\  ( -u 3  mod  8 )  =  5 )
2524simpli 111 . . . . . . . . . 10  |-  ( 3  mod  8 )  =  3
2622, 25eqtr4di 2244 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  ( 3  mod  8 ) )
27 simprr 531 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  3 )
2827, 25eqtr4di 2244 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  ( 3  mod  8 ) )
2913, 15, 16, 15, 19, 21, 26, 28modqmul12d 10452 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 ) )
3029orcd 734 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
3130ex 115 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
32 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  A  e.  ZZ )
33 znegcl 9351 . . . . . . . . . . 11  |-  ( 3  e.  ZZ  ->  -u 3  e.  ZZ )
3414, 33mp1i 10 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  -u 3  e.  ZZ )
35 simplr 528 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  B  e.  ZZ )
3614a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
3  e.  ZZ )
3718a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
8  e.  QQ )
3820a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
0  <  8 )
39 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  5 )
4024simpri 113 . . . . . . . . . . 11  |-  ( -u
3  mod  8 )  =  5
4139, 40eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  ( -u
3  mod  8 ) )
42 simprr 531 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  3 )
4342, 25eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  ( 3  mod  8 ) )
4432, 34, 35, 36, 37, 38, 41, 43modqmul12d 10452 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( (
-u 3  x.  3 )  mod  8 ) )
45 3cn 9059 . . . . . . . . . . 11  |-  3  e.  CC
4645, 45mulneg1i 8425 . . . . . . . . . 10  |-  ( -u
3  x.  3 )  =  -u ( 3  x.  3 )
4746oveq1i 5929 . . . . . . . . 9  |-  ( (
-u 3  x.  3 )  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
4844, 47eqtrdi 2242 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) )
4948olcd 735 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
5049ex 115 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
51 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  A  e.  ZZ )
5214a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
3  e.  ZZ )
53 simplr 528 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  B  e.  ZZ )
5414, 33mp1i 10 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  -u 3  e.  ZZ )
5518a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
8  e.  QQ )
5620a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
0  <  8 )
57 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  3 )
5857, 25eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  ( 3  mod  8 ) )
59 simprr 531 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  5 )
6059, 40eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  ( -u
3  mod  8 ) )
6151, 52, 53, 54, 55, 56, 58, 60modqmul12d 10452 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  -u 3
)  mod  8 ) )
6245, 45mulneg2i 8426 . . . . . . . . . 10  |-  ( 3  x.  -u 3 )  = 
-u ( 3  x.  3 )
6362oveq1i 5929 . . . . . . . . 9  |-  ( ( 3  x.  -u 3
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
6461, 63eqtrdi 2242 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) )
6564olcd 735 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
6665ex 115 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
67 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  A  e.  ZZ )
6814, 33mp1i 10 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  -u 3  e.  ZZ )
69 simplr 528 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  B  e.  ZZ )
7018a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
8  e.  QQ )
7120a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
0  <  8 )
72 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  5 )
7372, 40eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  ( -u
3  mod  8 ) )
74 simprr 531 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  5 )
7574, 40eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  ( -u
3  mod  8 ) )
7667, 68, 69, 68, 70, 71, 73, 75modqmul12d 10452 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( (
-u 3  x.  -u 3
)  mod  8 ) )
7745, 45mul2negi 8427 . . . . . . . . . 10  |-  ( -u
3  x.  -u 3
)  =  ( 3  x.  3 )
7877oveq1i 5929 . . . . . . . . 9  |-  ( (
-u 3  x.  -u 3
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )
7976, 78eqtrdi 2242 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 ) )
8079orcd 734 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
8180ex 115 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
8231, 50, 66, 81ccased 967 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 )  /\  (
( B  mod  8
)  =  3  \/  ( B  mod  8
)  =  5 ) )  ->  ( (
( A  x.  B
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  (
( A  x.  B
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 ) ) ) )
8312, 82sylbid 150 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
8483imp 124 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
85 simpll 527 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  ->  A  e.  ZZ )
86 simplr 528 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  ->  B  e.  ZZ )
8785, 86zmulcld 9448 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( A  x.  B
)  e.  ZZ )
881a1i 9 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
8  e.  NN )
8987, 88zmodcld 10419 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  NN0 )
90 elprg 3639 . . . 4  |-  ( ( ( A  x.  B
)  mod  8 )  e.  NN0  ->  ( ( ( A  x.  B
)  mod  8 )  e.  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u ( 3  x.  3 )  mod  8 ) }  <->  ( (
( A  x.  B
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  (
( A  x.  B
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 ) ) ) )
9189, 90syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( ( A  x.  B )  mod  8 )  e.  {
( ( 3  x.  3 )  mod  8
) ,  ( -u ( 3  x.  3 )  mod  8 ) }  <->  ( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8
)  \/  ( ( A  x.  B )  mod  8 )  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
9284, 91mpbird 167 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u (
3  x.  3 )  mod  8 ) } )
93 df-9 9050 . . . . . . . 8  |-  9  =  ( 8  +  1 )
94 8cn 9070 . . . . . . . . 9  |-  8  e.  CC
95 ax-1cn 7967 . . . . . . . . 9  |-  1  e.  CC
9694, 95addcomi 8165 . . . . . . . 8  |-  ( 8  +  1 )  =  ( 1  +  8 )
9793, 96eqtri 2214 . . . . . . 7  |-  9  =  ( 1  +  8 )
98 3t3e9 9142 . . . . . . 7  |-  ( 3  x.  3 )  =  9
9994mullidi 8024 . . . . . . . 8  |-  ( 1  x.  8 )  =  8
10099oveq2i 5930 . . . . . . 7  |-  ( 1  +  ( 1  x.  8 ) )  =  ( 1  +  8 )
10197, 98, 1003eqtr4i 2224 . . . . . 6  |-  ( 3  x.  3 )  =  ( 1  +  ( 1  x.  8 ) )
102101oveq1i 5929 . . . . 5  |-  ( ( 3  x.  3 )  mod  8 )  =  ( ( 1  +  ( 1  x.  8 ) )  mod  8
)
103 1nn 8995 . . . . . . 7  |-  1  e.  NN
104 nnq 9701 . . . . . . 7  |-  ( 1  e.  NN  ->  1  e.  QQ )
105103, 104ax-mp 5 . . . . . 6  |-  1  e.  QQ
106 1z 9346 . . . . . 6  |-  1  e.  ZZ
107 modqcyc 10433 . . . . . 6  |-  ( ( ( 1  e.  QQ  /\  1  e.  ZZ )  /\  ( 8  e.  QQ  /\  0  <  8 ) )  -> 
( ( 1  +  ( 1  x.  8 ) )  mod  8
)  =  ( 1  mod  8 ) )
108105, 106, 18, 20, 107mp4an 427 . . . . 5  |-  ( ( 1  +  ( 1  x.  8 ) )  mod  8 )  =  ( 1  mod  8
)
109102, 108eqtri 2214 . . . 4  |-  ( ( 3  x.  3 )  mod  8 )  =  ( 1  mod  8
)
11023simpli 111 . . . . 5  |-  ( ( 1  mod  8 )  =  1  /\  ( -u 1  mod  8 )  =  7 )
111110simpli 111 . . . 4  |-  ( 1  mod  8 )  =  1
112109, 111eqtri 2214 . . 3  |-  ( ( 3  x.  3 )  mod  8 )  =  1
113 znegcl 9351 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
114106, 113mp1i 10 . . . . . . 7  |-  ( T. 
->  -u 1  e.  ZZ )
115 3nn 9147 . . . . . . . . . 10  |-  3  e.  NN
116115, 115nnmulcli 9006 . . . . . . . . 9  |-  ( 3  x.  3 )  e.  NN
117116nnzi 9341 . . . . . . . 8  |-  ( 3  x.  3 )  e.  ZZ
118117a1i 9 . . . . . . 7  |-  ( T. 
->  ( 3  x.  3 )  e.  ZZ )
119106a1i 9 . . . . . . 7  |-  ( T. 
->  1  e.  ZZ )
12018a1i 9 . . . . . . 7  |-  ( T. 
->  8  e.  QQ )
12120a1i 9 . . . . . . 7  |-  ( T. 
->  0  <  8
)
122 eqidd 2194 . . . . . . 7  |-  ( T. 
->  ( -u 1  mod  8 )  =  (
-u 1  mod  8
) )
123109a1i 9 . . . . . . 7  |-  ( T. 
->  ( ( 3  x.  3 )  mod  8
)  =  ( 1  mod  8 ) )
124114, 114, 118, 119, 120, 121, 122, 123modqmul12d 10452 . . . . . 6  |-  ( T. 
->  ( ( -u 1  x.  ( 3  x.  3 ) )  mod  8
)  =  ( (
-u 1  x.  1 )  mod  8 ) )
125124mptru 1373 . . . . 5  |-  ( (
-u 1  x.  (
3  x.  3 ) )  mod  8 )  =  ( ( -u
1  x.  1 )  mod  8 )
12645, 45mulcli 8026 . . . . . . 7  |-  ( 3  x.  3 )  e.  CC
127126mulm1i 8424 . . . . . 6  |-  ( -u
1  x.  ( 3  x.  3 ) )  =  -u ( 3  x.  3 )
128127oveq1i 5929 . . . . 5  |-  ( (
-u 1  x.  (
3  x.  3 ) )  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
12995mulm1i 8424 . . . . . 6  |-  ( -u
1  x.  1 )  =  -u 1
130129oveq1i 5929 . . . . 5  |-  ( (
-u 1  x.  1 )  mod  8 )  =  ( -u 1  mod  8 )
131125, 128, 1303eqtr3i 2222 . . . 4  |-  ( -u ( 3  x.  3 )  mod  8 )  =  ( -u 1  mod  8 )
132110simpri 113 . . . 4  |-  ( -u
1  mod  8 )  =  7
133131, 132eqtri 2214 . . 3  |-  ( -u ( 3  x.  3 )  mod  8 )  =  7
134112, 133preq12i 3701 . 2  |-  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u (
3  x.  3 )  mod  8 ) }  =  { 1 ,  7 }
13592, 134eleqtrdi 2286 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   T. wtru 1365    e. wcel 2164   {cpr 3620   class class class wbr 4030  (class class class)co 5919   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056   -ucneg 8193   NNcn 8984   3c3 9036   5c5 9038   7c7 9040   8c8 9041   9c9 9042   NN0cn0 9243   ZZcz 9320   QQcq 9687    mod cmo 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342  df-mod 10397
This theorem is referenced by:  lgsdir2  15190
  Copyright terms: Public domain W3C validator